EGU21-11164, updated on 29 Oct 2021
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Formation of non-thermal electron velocity distribution functions in kinetic magnetic reconnection

Xin Yao, Patricio A. Muñoz, and Jörg Büchner
Xin Yao et al.
  • Max Planck Institute for Solar System Research, Sun and Heliosphere, Germany (
Magnetic reconnection can convert magnetic energy into non-thermal particle energy in the form of electron beams. Those accelerated electrons can, in turn, cause radio emission in environments such as solar flares. The actual properties of those electron velocity distribution functions (EVDFs) generated by reconnection are still not well understood. In particular the properties that are relevant for the micro-instabilities responsible for radio emission. We aim thus at characterizing the electron distributions functions generated by 3D magnetic reconnection by means of fully kinetic particle-in-cell (PIC) code simulations. Our goal is to characterize the possible sources of free energy of the generated EVDFs in dependence on an external (guide) magnetic field strength. We find that: (1) electron beams with positive gradients in their parallel (to the local magnetic field direction) distribution functions are observed in both diffusion region (parallel crescent-shaped EVDFs) and separatrices (bump-on-tail EVDFs). These non-thermal EVDFs cause counterstreaming and bump-on-tail instabilities. These electrons are adiabatic and preferentially accelerated by a parallel electric field in regions where the magnetic moment is conserved. (2) electron beams with positive gradients in their perpendicular distribution functions are observed in regions with weak magnetic field strength near the current sheet midplane. The characteristic crescent-shaped EVDFs (in perpendicular velocity space) are observed in the diffusion region. These non-thermal EVDFs can cause electron cyclotron maser instabilities. These non-thermal electrons in perpendicular velocity space are mainly non-adiabatic. Their EVDFs are attributed to electrons experiencing an E×B drift and meandering motion. (3) As the guide field strength increases, the number of locations in the current sheet with distributions functions featuring a perpendicular source of free energy significantly decreases.

How to cite: Yao, X., Muñoz, P. A., and Büchner, J.: Formation of non-thermal electron velocity distribution functions in kinetic magnetic reconnection, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11164,, 2021.

Corresponding displays formerly uploaded have been withdrawn.