EGU21-11484, updated on 04 Mar 2021
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Using convection-permitting climate models and a high-resolution distributed hydrological model to assess future changes in Alpine flash floods.

Marjanne Zander1,2, Pety Viguurs2, Frederiek Sperna Weiland1, and Albrecht Weerts1,2
Marjanne Zander et al.
  • 1Deltares, Inland Water Systems - Catchment and Urban Hydrology, Delft, Netherlands (
  • 2Wageningen UR, Environmental Sciences Group, Chairgroup of Hydrology and Quantitative Water Management, Wageningen, Netherlands

Flash Floods are damaging natural hazards which often occur in the European Alps. Precipitation patterns and intensity may change in a future climate affecting their occurrence and magnitude. For impact studies, flash floods can be difficult to simulate due the complex orography and limited extent & duration of the heavy rainfall events which trigger them. The new generation convection-permitting regional climate models improve the intensity and frequency of heavy precipitation (Ban et al., 2021).

Therefore, this study combines such simulations with high-resolution distributed hydrological modelling to assess changes in flash flood frequency and occurrence over the Alpine terrain. We use the state-of-the-art Unified Model (Berthou et al., 2018) to drive a high-resolution distributed hydrological wflow_sbm model (e.g. Imhoff et al., 2020) covering most of the Alpine mountain range on an hourly resolution. Simulations of the future climate RCP 8.5 for the end-of-century (2096-2105) and current climate (1998-2007) are compared.

First, the wflow_sbm model was validated by comparing ERA5 driven simulation with streamflow observations (across Rhone, Rhine, Po, Adige and Danube). Second, the wflow_sbm simulation driven by UM simulation of the current climate was compared to a dataset of historical flood occurrences (Paprotny et al., 2018, Earth Syst. Sci. Data) to validate if the model can accurately simulate the location of the flash floods and to determine a suitable threshold for flash flooding. Finally, the future run was used to asses changes in flash flood frequency and occurrence. Results show an increase in flash flood frequency for the Upper Rhine and Adige catchments. For the Rhone the increase was less pronounced. The locations where the flash floods occur did not change much.

This research is embedded in the EU H2020 project EUCP (EUropean Climate Prediction system) (, which aims to support climate adaptation and mitigation decisions for the coming decades by developing a regional climate prediction and projection system based on high-resolution climate models for Europe.


N. Ban, E. Brisson, C. Caillaud, E. Coppola, E. Pichelli, S. Sobolowski, …, M.J. Zander (2021): “The first multi-model ensemble of regional climate simulations at the kilometer-scale resolution, Part I: Evaluation of precipitation”, manuscript accepted for publication in Climate Dynamics.

S. Berthou, E.J. Kendon, S. C. Chan, N. Ban, D. Leutwyler, C. Schär, and G. Fosser, 2018, “Pan-european climate at convection-permitting scale: a model intercomparison study.” Climate Dynamics, pages 1–25, DOI: 10.1007/s00382-018-4114-6

Imhoff, R.O., W. van Verseveld, B. van Osnabrugge, A.H. Weerts, 2020. “Scaling point-scale pedotransfer functions parameter estimates for seamless large-domain high-resolution distributed hydrological modelling: An example for the Rhine river.” Water Resources Research, 56. Doi: 10.1029/2019WR026807

Paprotny, D., Morales Napoles, O., & Jonkman, S. N., 2018. "HANZE: a pan-European database of exposure to natural hazards and damaging historical floods since 1870". Earth System Science Data, 10, 565–581,

How to cite: Zander, M., Viguurs, P., Sperna Weiland, F., and Weerts, A.: Using convection-permitting climate models and a high-resolution distributed hydrological model to assess future changes in Alpine flash floods., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11484,, 2021.