EGU21-11603
https://doi.org/10.5194/egusphere-egu21-11603
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Role of eddies and N2 fixation in shaping C:N:P proportions in the Bay of Bengal during spring

Deepika Sahoo1, Himanshu Saxena1, Sipai Nazirahmed1, Sanjeev Kumar1, Athiyarath Sudheer1, Ravi Bhushan1, Arvind Sahay2, and Arvind Singh1
Deepika Sahoo et al.
  • 1Physical Research Laboratory, Geosciences, AHMEDABAD, India (deepikasahoo93@gmail.com)
  • 2Space Applications Centre, AHMEDABAD, India

Bioavailable nitrogen (N) and phosphorus (P) determine the strength of the ocean’s carbon (C) uptake and variation in their ratio (N:P) is key to phytoplankton growth. A similarity between C:N:P ratio (106:16:1) in plankton and deep-water inorganic nutrients was observed by Alfred C. Redfield, who suggested that biological processes in the surface ocean controlled deep ocean chemistry. Recent studies suggest that the ratio varies geographically. The veracity in C:N:P ratio could be attributed to the characteristic physical and biogeochemical processes, which play an important role in regulating the elemental dynamics in ocean. Basins like the northern Indian Ocean due to its geographic setting and monsoonal wind forcing provide a natural laboratory to explore the role of environmental factors, physical and biogeochemical processes on C:N:P stoichiometry.

We sampled the Bay of Bengal for its C, N, and P contents in the organic and inorganic pool from surface to 2000 m at 8 stations (5 coastal, 3 open ocean) during spring 2019. Mesoscale anticyclonic eddies were identified in our sampling area, which were associated with low nutrient concentrations in the photic depth. Mean (NO3- + NO2-):PO43- ratio was 0.6 at eddy and 4.7 at non eddy stations. On the other hand, C:N:P in the organic matter was same at eddy and non-eddy locations. Mean C:N:P ratio in particulate organic matter was 254:39:1 and 244:37:1 in the photic depth of the coastal and open ocean stations, respectively. Biological N2 fixation contributed ~0.1-0.4% to the N:P ratio of export flux, which ultimately contributes to the (NO3- + NO2-):PO43- ratio in subsurface waters. Our results highlight the importance of physical and biological processes in changing elemental stoichiometry.

How to cite: Sahoo, D., Saxena, H., Nazirahmed, S., Kumar, S., Sudheer, A., Bhushan, R., Sahay, A., and Singh, A.: Role of eddies and N2 fixation in shaping C:N:P proportions in the Bay of Bengal during spring, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11603, https://doi.org/10.5194/egusphere-egu21-11603, 2021.

Displays

Display file