EGU21-12033
https://doi.org/10.5194/egusphere-egu21-12033
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Whitecap coverage measurements in laboratory modeling of wind-wave interaction in presence of induced wave breaking

Alexander Kandaurov, Yuliya Troitskaya, Vasiliy Kazakov, and Daniil Sergeev
Alexander Kandaurov et al.
  • Institute of Applied Physics of the RAS, Department of geophysical research, Nizhny Novgorod, Russian Federation (green.pb@gmail.com)

Whitecap coverage were retrieved from high-speed video recordings of the water surface obtained on the unique laboratory faculty The Large Thermostratified Test Tank with wind-wave channel (cross-section from 0.7×0.7 to 0.7×0.9 m2 at the end, 12 m fetch, wind velocity up to 35 m/s, U10 up to 65 m/s). The wind wave was induced using a wave generator installed at the beginning of the channel (a submerged horizontal plate, frequency 1.042 Hz, amplitude 93 mm) working in a pulsed operation (three periods). Wave breaking was induced in working area by a submerged plate (1.2×0.7 m2, up to 12 depth, AOA -11,7°). Experiments were carried out for equivalent wind velocities U10 from 17.8 to 40.1 m/s. Wire wave gauge was used to control the shape and phase of the incident wave.

To obtain the surface area occupied by wave breaking, we used two Cygnet CY2MP-CL-SN cameras with 50 mm lenses. The cameras are installed above the channel at a height of 273 cm from the water surface, separated by 89 cm. The image scale was 302 μm/px, the size of the image obtained from each camera is 2048x1088 px2, which corresponds to 619x328 mm2 (the long side of the frame along the channel). The shooting was carried out with a frequency of 50 Hz, an exposure time of 3 ms, 250 frames were recorded for each wave train. To illuminate the image areas to the side of the measurement area, a diffuse screen was placed on the side wall, which was illuminated by powerful LED lamps to create a uniform illumination source covering the entire side wall of the section.

Using specially developed software for automatic detection of areas of wave breaking, the values of the whitecap coverage area were obtained. Automatic image processing was performed using morphological analysis in combination with manual processing of part of the frames for tweaking the algorithm parameters: for each mode, manual processing of several frames was performed, based on the results of which automatic algorithm parameters were selected to ensure that the resulting whitecap coverage corresponded. Comparison of images obtained from different angles made it possible to detect and exclude areas of glare on the surface from the whitecap coverage.

The repeatability of the created wave breakings allows carrying out independent measurements for the same conditions, for example the parameters of spray generation will give estimations of the average number of fragmentation events per unit area of the wave breaking area.

The work was supported by the RFBR grants 21-55-50005 and 20-05-00322 (conducting an experiment), President grant for young scientists МК-5503.2021.1.5 (software development) and the RSF grant No. 19-17-00209 (data processing).

How to cite: Kandaurov, A., Troitskaya, Y., Kazakov, V., and Sergeev, D.: Whitecap coverage measurements in laboratory modeling of wind-wave interaction in presence of induced wave breaking, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12033, https://doi.org/10.5194/egusphere-egu21-12033, 2021.

Displays

Display file