EGU21-12142
https://doi.org/10.5194/egusphere-egu21-12142
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Intra-domain and cross-domain transfer learning for time series

Erik Otović1, Marko Njirjak1, Dario Jozinović2,3, Goran Mauša1,4, Alberto Michelini2, and Ivan Štajduhar1,4
Erik Otović et al.
  • 1University of Rijeka, Faculty of Engineering, Rijeka, Croatia
  • 2Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
  • 3Department of Science, Roma Tre University, Rome, Italy
  • 4University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Rijeka, Croatia

In this study, we compared the performance of machine learning models trained using transfer learning and those that were trained from scratch - on time series data. Four machine learning models were used for the experiment. Two models were taken from the field of seismology, and the other two are general-purpose models for working with time series data. The accuracy of selected models was systematically observed and analyzed when switching within the same domain of application (seismology), as well as between mutually different domains of application (seismology, speech, medicine, finance). In seismology, we used two databases of local earthquakes (one in counts, and the other with the instrument response removed) and a database of global earthquakes for predicting earthquake magnitude; other datasets targeted classifying spoken words (speech), predicting stock prices (finance) and classifying muscle movement from EMG signals (medicine).
In practice, it is very demanding and sometimes impossible to collect datasets of tagged data large enough to successfully train a machine learning model. Therefore, in our experiment, we use reduced data sets of 1,500 and 9,000 data instances to mimic such conditions. Using the same scaled-down datasets, we trained two sets of machine learning models: those that used transfer learning for training and those that were trained from scratch. We compared the performances between pairs of models in order to draw conclusions about the utility of transfer learning. In order to confirm the validity of the obtained results, we repeated the experiments several times and applied statistical tests to confirm the significance of the results. The study shows when, within the set experimental framework, the transfer of knowledge brought improvements in terms of model accuracy and in terms of model convergence rate.

Our results show that it is possible to achieve better performance and faster convergence by transferring knowledge from the domain of global earthquakes to the domain of local earthquakes; sometimes also vice versa. However, improvements in seismology can sometimes also be achieved by transferring knowledge from medical and audio domains. The results show that the transfer of knowledge between other domains brought even more significant improvements, compared to those within the field of seismology. For example, it has been shown that models in the field of sound recognition have achieved much better performance compared to classical models and that the domain of sound recognition is very compatible with knowledge from other domains. We came to similar conclusions for the domains of medicine and finance. Ultimately, the paper offers suggestions when transfer learning is useful, and the explanations offered can provide a good starting point for knowledge transfer using time series data.

How to cite: Otović, E., Njirjak, M., Jozinović, D., Mauša, G., Michelini, A., and Štajduhar, I.: Intra-domain and cross-domain transfer learning for time series, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12142, https://doi.org/10.5194/egusphere-egu21-12142, 2021.

Corresponding displays formerly uploaded have been withdrawn.