EGU21-1217
https://doi.org/10.5194/egusphere-egu21-1217
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

How Chosen Seismic Fault Picking Strategy Influences Subsequent Fault Analyses: A Case Study from the Horda Platform, with Implications for CO2 storage

Emma Michie, Mark Mulrooney, and Alvar Braathen
Emma Michie et al.
  • University of Oslo, Geosciences, Oslo, Norway (e.m.haines@geo.uio.no)

Significant uncertainties occur through varying methodologies when interpreting faults using seismic data.  These uncertainties are carried through to the interpretation of how faults may act as baffles/barriers or increase fluid flow.  Seismic line spacing chosen by the interpreter when picking fault segments, as well as the chosen surface generation algorithm used, will dictate how detailed or smoothed the surface is, and hence will impact any further interpretation such as fault seal, fault stability and fault growth analyses.

This contribution is a case study showing how picking strategies influence analysis of a bounding fault in terms of CO2 storage assessment.  This example utilizes data from the Smeaheia potential storage site within the Horda Platform, 20 km East of Troll East.  This is a fault bound prospect, known as the Alpha prospect, and hence the bounding fault is required to have a high seal potential and low chance of reactivation upon CO2 injection.

We can observe that an optimum spacing for fault interpretation for this case study is set at approximately 100 m.  It appears that any additional detail through interpretation with a line spacing of ≤50 m simply adds further complexities, associated with sensitivities by the individual interpreter.  Hence, interpreting at a finer scale may not necessarily improve the subsurface model and any related analysis, but in fact lead to the production of highly irregular surfaces, which impacts any further fault analysis.  Interpreting on spacing greater than 100 m often leads to overly smoothed fault surfaces that miss details that could be crucial, both for fault seal / stability as well as for fault growth models.

Uncertainty associated with the chosen seismic interpretation methodology will follow through to subsequent fault seal analysis, such as analysis of whether in situ stresses, combined with increased pore pressure through CO2 injection, will act to reactivate the faults, leading to up-fault fluid flow / seep.  We have shown that changing picking strategies significantly alters the interpreted stability of the fault, where picking with an increased line spacing has shown to increase the overall fault stability, and picking using every line leads to the interpretation of a critically stressed fault.  Alternatively, it is important to note that differences in picking strategy show little influence on the overall predicted fault membrane seal (i.e. shale gouge ratio) of the fault, used when interpreting the fault seal capacity for a fault bound CO2 storage site.

How to cite: Michie, E., Mulrooney, M., and Braathen, A.: How Chosen Seismic Fault Picking Strategy Influences Subsequent Fault Analyses: A Case Study from the Horda Platform, with Implications for CO2 storage, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1217, https://doi.org/10.5194/egusphere-egu21-1217, 2021.

Corresponding displays formerly uploaded have been withdrawn.