EGU21-12210
https://doi.org/10.5194/egusphere-egu21-12210
EGU General Assembly 2021
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Urban methane emission estimate using measurements obtained by MUCCnet (Munich Urban Carbon Column network)

Florian Dietrich1, Jia Chen1, Adrian Wenzel1, Andreas Forstmaier1, Friedrich Klappenbach1, Xinxu Zhao1, Nico Nachtigall1, Magdalena Altmann1, Johannes C. Paetzold2, Taylor Jones3,4, Jonathan Franklin3, Andreas Luther5, Ralph Kleinscheck6, Andre Butz6, and Frank Hase7
Florian Dietrich et al.
  • 1Environmental Sensing and Modeling, Technical University of Munich (TUM), Munich, Germany (flo.dietrich@tum.de)
  • 2Chair for Computer Aided Medical Procedures and Augmented Reality, Technical University of Munich, Munich, Germany
  • 3School of Engineering and Applied Sciences, Harvard University, Boston, United States
  • 4Earth and Environment, Boston University, Boston, United States
  • 5Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
  • 6Institut für Umweltphysik, University of Heidelberg, Heidelberg,
  • 7Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany

In 2019, we established the Munich Urban Carbon Column network (MUCCnet) [1] that measures the column-averaged concentration gradients of CO2, CH4 and CO using the differential column methodology (DCM, [2]). The network consists of five ground-based FTIR spectrometers (EM27/SUN from Bruker [3]), which are deployed both on the outskirts of Munich and in the city center. The distance between each outer spectrometer and the center station is approximately 10 km. Each spectrometer is protected by one of our fully automated enclosure systems [4], allowing us to run the network permanently. In addition, data are available from three one-month measurement campaigns in Munich between 2017 and 2019, each using five to six spectrometers.

To quantify urban methane emissions, we developed a Bayesian inverse modeling approach that was tested first in Indianapolis using campaign data from 2016 [5]. After adapting the modeling framework to the Munich case, we are able to use the large amount of data gathered by MUCCnet to quantify the methane emissions of the third largest city in Germany in detail. The framework takes the spatially resolved emission inventory TNO-GHGco (1 km x 1 km) as a prior estimate and refines it through the Bayesian inversion of the EM27/SUN observations. Our long-term dataset and continuous operation will provide new insights into Munich’s urban carbon cycle and will allow us to evaluate climate protection measures in the future.

Thanks to the automation, we were also able to continue the measurements during the COVID-19 lockdowns in Germany, resulting in a unique dataset that allows us to verify and improve our model.

[1] Dietrich, F., Chen, J., Voggenreiter, B., Aigner, P., Nachtigall, N., and Reger, B.: Munich permanent urban greenhouse gas column observing network, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2020-300, accepted, 2020.

[2] Chen, J., Viatte, C., Hedelius, J. K., Jones, T., Franklin, J. E., Parker, H., Gottlieb, E. W., Wennberg, P. O., Dubey, M. K., and Wofsy, S. C.: Differential column measurements using compact solar-tracking spectrometers, Atmos. Chem. Phys., 16, 8479–8498, https://doi.org/10.5194/acp-16-8479-2016, 2016. 

[3] Gisi, M., Hase, F., Dohe, S., Blumenstock, T., Simon, A., and Keens, A.: XCO2-measurements with a tabletop FTS using solar absorption spectroscopy, Atmos. Meas. Tech., 5, 2969–2980, https://doi.org/10.5194/amt-5-2969-2012, 2012.

[4] Heinle, L. and Chen, J.: Automated enclosure and protection system for compact solar-tracking spectrometers, Atmos. Meas. Tech., 11, 2173–2185, https://doi.org/10.5194/amt-11-2173-2018, 2018.

[5] Jones, T. S., Franklin, J. E., Chen, J., Dietrich, F., Hajny, K. D., Paetzold, J. C., Wenzel, A., Gately, C., Gottlieb, E., Parker, H., Dubey, M., Hase, F., Shepson, P. B., Mielke, L. H., and Wofsy, S. C.: Assessing Urban Methane Emissions using Column Observing Portable FTIR Spectrometers and a Novel Bayesian Inversion Framework, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1262, in review, 2021.

How to cite: Dietrich, F., Chen, J., Wenzel, A., Forstmaier, A., Klappenbach, F., Zhao, X., Nachtigall, N., Altmann, M., Paetzold, J. C., Jones, T., Franklin, J., Luther, A., Kleinscheck, R., Butz, A., and Hase, F.: Urban methane emission estimate using measurements obtained by MUCCnet (Munich Urban Carbon Column network), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12210, https://doi.org/10.5194/egusphere-egu21-12210, 2021.