EGU21-1225, updated on 23 Mar 2021
https://doi.org/10.5194/egusphere-egu21-1225
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Monitoring the Ocean Heat Content and the Earth Energy imbalance from space altimetry and space gravimetry: the MOHeaCAN product

Marti Florence1, Ablain Michaël1, Fraudeau Robin1, Jugier Rémi1, Meyssignac Benoît2, Blazquez Alejandro2, Restano Marco3, and Benveniste Jérôme4
Marti Florence et al.
  • 1Magellium, Ramonville St Agne, France
  • 2LEGOS, Toulouse, France
  • 3SERCO-ESRIN, Italy
  • 4ESA/ESRIN, Italy

The Earth Energy Imbalance (EEI) is a key indicator to understand climate change. However, measuring this indicator is challenging since it is a globally integrated variable whose variations are small, of the order of several tenth of W.m-2, compared to the amount of energy entering and leaving the climate system of ~340 W.m-2. Recent studies suggest that the EEI response to anthropogenic GHG and aerosols emissions is 0.5-1 W.m-2. It implies that an accuracy of <0.3 W.m-2 at decadal time scales is necessary to evaluate the long term mean EEI associated with anthropogenic forcing. Ideally an accuracy of <0.1 W.m-2 at decadal time scales is desirable if we want to monitor future changes in EEI.

In the frame of the MOHeaCAN project supported by ESA, the EEI indicator is deduced from the global change in Ocean Heat Content (OHC) which is a very good proxy of the EEI since the ocean stores 93% of the excess of heat  gained by the Earth in response to EEI. The OHC is estimated from space altimetry and gravimetry missions (GRACE). This “Altimetry-Gravimetry'' approach is promising because it provides consistent spatial and temporal sampling of the ocean, it samples nearly the entire global ocean, except for polar regions, and it provides estimates of the OHC over the ocean’s entire depth. Consequently, it complements the OHC estimation from the ARGO network. 

The MOHeaCAN product contains monthly time series (between August 2002 and June 2017) of several variables, the main ones being the regional OHC (3°x3° spatial resolution grids), the global OHC and the EEI indicator. Uncertainties are provided for variables at global scale, by propagating errors from sea level measurements (altimetry) and ocean mass content (gravimetry). In order to calculate OHC at regional and global scales, a new estimate of the expansion efficiency of heat at global and regional scales have been performed based on the global ARGO network. 

A scientific validation of the MOHeaCAN product has also been carried out performing thorough comparisons against independent estimates based on ARGO data and on the Clouds and the Earth’s Radiant energy System (CERES) measurements at the top of the atmosphere. The mean EEI derived from MOHeaCAN product is 0.84 W.m-2 over the whole period within an uncertainty of ±0.12 W.m-2 (68% confidence level - 0.20 W.m-2 at the 90% CL). This figure is in agreement (within error bars at the 90% CL) with other EEI indicators based on ARGO data (e.g. OHC-OMI from CMEMS) although the best estimate is slightly higher. Differences from annual to inter-annual scales have also been observed with ARGO and CERES data. Investigations have been conducted to improve our understanding of the benefits and limitations of each data set to measure EEI at different time scales.

The MOHeaCAN product from “altimetry-gravimetry” is now available and can be downloaded at https://doi.org/10.24400/527896/a01-2020.003. Feedback from interested users on this product are welcome.

How to cite: Florence, M., Michaël, A., Robin, F., Rémi, J., Benoît, M., Alejandro, B., Marco, R., and Jérôme, B.: Monitoring the Ocean Heat Content and the Earth Energy imbalance from space altimetry and space gravimetry: the MOHeaCAN product, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1225, https://doi.org/10.5194/egusphere-egu21-1225, 2021.

Display materials

Display link Display file

Comments on the display material

to access the discussion