EGU21-1231, updated on 03 Mar 2021
https://doi.org/10.5194/egusphere-egu21-1231
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Towards an improved temporal stability of CCI+SSS time series

Xavier Perrot1, Jacqueline Boutin1, Jean Luc Vergely2, Frédéric Rouffi2, Adrien Martin3, Sébastien Guimbard4, Julia Koehler5, Nicolas Reul6, Rafael Catany7, and Paolo Cipollini8
Xavier Perrot et al.
  • 1LOCEAN, CNRS, Paris, France
  • 2ACRI-ST, France
  • 3NOC, Southampton, United Kingdom
  • 4OceanScope, Brest, France
  • 5IfM, Hamburg University, Hamburg, Germany
  • 6LOPS, Ifremer, Brest, France
  • 7ARGANS Ltd, Plymouth, United Kingdom
  • 8ESA EO, Noordwijk, Netherlands

This study is performed in the frame of the European Space Agency (ESA) Climate Change Initiative (CCI+) for Sea Surface Salinity (SSS), which aims at generating global SSS fields from all available satellite L-band radiometer measurements over the longest possible period with a great stability. By combining SSS from the Soil Moisture and Ocean Salinity, SMOS, Aquarius and the Soil Moisture Active Passive, SMAP missions, CCI+SSS fields (Boutin et al. 2020) are the only one to provide a 10 year time series of satellite salinity with such quality: global rms difference of weekly 25x25km2 CCI+SSS with respect to in situ Argo SSS of 0.17 pss, correlation coefficient of 0.97 (see https://pimep.ifremer.fr/diffusion/analyses/mdb-database/GO/cci-l4-esa-merged-oi-v2.31-7dr/argo/report/pimep-mdb-report_GO_cci-l4-esa-merged-oi-v2.31-7dr_argo_20201215.pdf). Nevertheless, we found that some systematic biases remained. In this presentation, we will show how they will be reduced in the next CCI+SSS version.

The key satellite mission ensuring the longest time period, since 2010, at global scale, is SMOS. We implemented a re-processing of the whole SMOS dataset by changing some key points. Firstly we replace the Klein and Swift (1977) dielectric constant parametrization by the new Boutin et al. (2020) one. Secondly we change the reference dataset used to perform a vicarious calibration over the south east Pacific Ocean (the so-called Ocean Target Transformation), by using Argo interpolated fields (ISAS, Gaillard et al. 2016) contemporaneous to the satellite measurements instead of the World Ocean Atlas climatology. And thirdly the auxiliary data (wind, SST, atmospheric parameters) used as priors in the retrieval scheme, which come in the original SMOS processing from the ECMWF forecast model were replaced by ERA5 reanalysis.

Our results are showing a quantitative improvement in the stability of the SMOS CCI+SSS with respect to in situ measurements for all the period as well as a decrease of the spread of the difference between SMOS and in situ salinity measurements.

Bibliography:

J. Boutin et al. (2020), Correcting Sea Surface Temperature Spurious Effects in Salinity Retrieved From Spaceborne L-Band Radiometer Measurements, IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2020.3030488.

F. Gaillard et al. (2016), In Situ–Based Reanalysis of the Global Ocean Temperature and Salinity with ISAS: Variability of the Heat Content and Steric Height, Journal of Climate, vol. 29, no. 4, pp. 1305-1323, doi: 10.1175/JCLI-D-15-0028.1.

L. Klein and C. Swift (1977), An improved model for the dielectric constant of sea water at microwave frequencies, IEEE Transactions on Antennas and Propagation, vol. 25, no. 1, pp. 104-111, doi: 10.1109/JOE.1977.1145319.

Data reference:

J. Boutin et al. (2020): ESA Sea Surface Salinity Climate Change Initiative (Sea_Surface_Salinity_cci): Weekly sea surface salinity product, v2.31, for 2010 to 2019. Centre for Environmental Data Analysis. https://catalogue.ceda.ac.uk/uuid/eacb7580e1b54afeaabb0fd2b0a53828

How to cite: Perrot, X., Boutin, J., Vergely, J. L., Rouffi, F., Martin, A., Guimbard, S., Koehler, J., Reul, N., Catany, R., and Cipollini, P.: Towards an improved temporal stability of CCI+SSS time series, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1231, https://doi.org/10.5194/egusphere-egu21-1231, 2021.