Hydroclimatic Controls on Salt Fluxes and Halite Deposition in the Dead Sea and the Shaping of “Salt Giants”
- 1Geological Survey of Israel, Jerusalem, Israel (ido.sirota@mail.huji.ac.il)
- 2The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- 3Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
As the only deep hypersaline, halite‐precipitating lake on Earth today, the Dead Sea is the
single modern analog for investigating the mechanisms by which large‐scale and thick salt deposits,
known as “salt giants”, have accreted in the geological record. We directly measure the hydroclimatic forcing
and the physical limnologic processes leading to halite sedimentation, the vertical thermohaline structure,
and salt fluxes in the Dead Sea. We demonstrate that changes in these forcing lead to strong seasonal
and regional variations in the stratification stability ratio, triggering corresponding spatiotemporal
variations in thermohaline staircase formation and diapycnal salt flux, and finally control the thickness of
the halite layer deposited. The observed staircase formation is consistent with the mean‐field γ instability,
causing layering in double‐diffusive convection. We show that double diffusion and thermohaline staircase
formation drive the spatial variability of halite deposition in hypersaline water bodies, underlying and
shaping “salt giants” basin architecture.
How to cite: Sirota, I., Ouillon, R., Mor, Z., Meiburg, E., Enzel, Y., Arnon, A., and Lensky, N.: Hydroclimatic Controls on Salt Fluxes and Halite Deposition in the Dead Sea and the Shaping of “Salt Giants”, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12510, https://doi.org/10.5194/egusphere-egu21-12510, 2021.