EGU21-12833, updated on 27 Apr 2021
https://doi.org/10.5194/egusphere-egu21-12833
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

An improved representation of ephemeral pool hydrology in a semi-distributed hydrologic model

Mohammad Bizhanimanzar1,2, Marie Larocque1,3,4, and Marjolaine Roux1,3,4
Mohammad Bizhanimanzar et al.
  • 1Université du Québec à Montréal, Sciences de la Terre et de l'atmosphère, Montréal, Québec, Canada
  • 2Ouranos Consortium, Montréal, Québec, Canada
  • 3GEOTOP Research Center, Montréal, Québec, Canada
  • 4GRIL Research Center, Montréal, Québec, Canada

Ephemeral pools are seasonally flooded geographically isolated wetlands with distinct hydrology i.e., they are filled in winter and spring with inflow from snowmelt, and precipitation and dry out during summer. Ephemeral pools offer a variety of biodiversity benefits notably providing breeding habitat for several amphibian and invertebrate species. The quality of their ecosystem services is mainly controlled by their hydroperiod which is regulated by hydrology i.e., inflow /outflow of the pools. The classic water budget modeling approach with a simplified representation of the flow exchange between the pool and surface-subsurface zones may not adequately reveal their sensitivity to anthropogenic interventions and climatic changes. On the other hand, the generic volume-area-depth relationship of isolated wetlands in deterministic hydrologic models may not adequately reveal their dynamic water level fluctuations. The objective of this study, in the first place, is to improve the representation of ephemeral pools in the semi-distributed SWAT hydrological model, notably in the pothole module which is used for modeling isolated wetlands. The developed model will then be used to analyze the impact of land use and climate changes on dynamics of hydroperiods of ephemeral pools of the Saumon River watershed (68 km2) in the Canadian Shield of the Outaouais region (Quebec, Canada). A detailed bathymetry survey along with a long series (one to five years) of daily water level measurements available at ten pools allowed to replace the simplified linear volume-area relationship with the measured rating curve for the ephemeral pools in this region. The calibration process of the revised model is performed using the standard SWAT calibration code (SWAT-CUP) coupled to a Particle Swarm Optimization (PSO) algorithm adjusting evaporation and seepage coefficients of the revised module for all isolated wetlands of the region. This double calibration ensures representation of both the watershed hydrology (10 years of river flow rates) and the water level fluctuations in the pools. The simulation results show that the revised SWAT version can adequately reproduce the dynamic water level behavior of the monitored pools as well as streamflow discharges. The model is currently used with scenarios of human and climatic disturbances to understand their impact on the filling-drying cycle of ephemeral pools and on the integrated hydrologic system at the watershed scale.

How to cite: Bizhanimanzar, M., Larocque, M., and Roux, M.: An improved representation of ephemeral pool hydrology in a semi-distributed hydrologic model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12833, https://doi.org/10.5194/egusphere-egu21-12833, 2021.

Displays

Display file