EGU21-12844
https://doi.org/10.5194/egusphere-egu21-12844
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Exploring the relationship between organic deposition resulting from marshes and autogenic scales in deltaic stratigraphy

Jose Silvestre1, Kelly Sanks2, Sam Zapp2, Dutt Ripul1, John Shaw2, and Kyle Straub1
Jose Silvestre et al.
  • 1Tulane University, New Orleans, United States of America
  • 2University of Arkansas, Fayetteville, United States of America

Many deltas contain extensive marshes, typically defined as laterally extensive, low energy settings tied to a narrow elevation window around sea level. Biological activity in marshes results in in-situ organic sediment accumulation that has the potential to be stored in the sedimentary record. However, it is unclear how marshes interact with channels that transport the clastic sediment and typically control autogenic stratigraphic architecture. We present results from a physical experiment designed to explore the coupled evolution of marshes and deltas over geologic timescales. In the experiment, deltaic channels self-organized due to constant input rates of water and clastic sediment that experience constant long-term accommodation production through sea-level rise. A low bulk density kaolinite clay was deposited on the delta-top following rules developed by the ecology community for in-situ organic production. The kaolinite clay serves as a proxy for the in-situ organic sediments in overbank regions. As such, the autogenic processes of the clastic transport system, which influence elevation relative to sea-level, also exert a control on the scales of preserved organic-rich strata. We quantify the fraction of the organic sediment proxy in the fluvio-deltaic deposit to define a transfer function between the accumulation of organic sediment and its preservation beneath the morphodynamically active layer. We also use synthetic stratigraphy and images of the preserved strata to characterize the spatial arrangements of organic strata, and the influence of marshes on the resulting arrangement of channel bodies. Initial findings suggest that the thickest seams are located near the mean shoreline but extend significant distances from this location due to autogenic shoreline transgressions and regressions. Quantifying these trends will inform our understanding of how in-situ organic sediment accumulation influences clastic transport systems and the structure of deltaic stratigraphy.

How to cite: Silvestre, J., Sanks, K., Zapp, S., Ripul, D., Shaw, J., and Straub, K.: Exploring the relationship between organic deposition resulting from marshes and autogenic scales in deltaic stratigraphy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12844, https://doi.org/10.5194/egusphere-egu21-12844, 2021.

Displays

Display file