Theoretical modelling of ice shelf vibrations forced by ocean surface waves
- 1University of Adelaide, School of Mathematical Sciences, Adelaide, Australia (luke.bennetts@adelaide.edu.au)
- 2University of Newcastle, School of Mathematical and Physical Sciences, Australia
Seismic measurements show that ice shelves vibrate in response to ocean surface waves over a wide frequency range, from long swell to tsunami waves. The phenomenon of wave-induced ice-shelf vibrations has been linked to calving of large icebergs, rift propagation, icequake activity, and triggering of catastrophic disintegrations. I will present some recent advances in theoretical modelling of wave-induced ice-shelf vibrations, including coupling of the ice shelf/sub-shelf cavity to the open ocean, studying the influence of ice-shelf thickening and seabed shoaling towards the grounding line, simulating transient vibrations in response to incident wave packets, and incorporation of real ice-shelf and seabed geometries via the BEDMAP2 dataset. I will introduce the open-source software iceFEM, which contains many of the latest advances.
How to cite: Bennetts, L., Meylan, M., Kalyanaraman, B., and Lamichhane, B.: Theoretical modelling of ice shelf vibrations forced by ocean surface waves, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13620, https://doi.org/10.5194/egusphere-egu21-13620, 2021.
Corresponding displays formerly uploaded have been withdrawn.