Linking Domain Repositories to Build Cyberinfrastructure for Interdisciplinary Critical Zone Research
- 1Utah State University, Utah Water Research Laboratory, Civil and Environmental Engineering, Logan, Utah, USA (jeff.horsburgh@usu.edu)
- 2Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA (lehnert@ldeo.columbia.edu)
- 3Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), Cambridge, Massachusetts, USA (jdbales@cuahsi.org)
Critical Zone science studies the system of coupled chemical, biological, physical, and geological processes operating together across all scales to support life at the Earth's surface (Brantley et al., 2007). In 2020, the U.S. National Science Foundation funded 10 Critical Zone Collaborative Network awards. These 5-year projects will collaboratively work to answer scientific questions relevant to understanding processes in the Critical Zone such as the effects of urbanization on Critical Zone processes; Critical Zone function in semi-arid landscapes and the role of dust in sustaining these ecosystems; processes in deep bedrock and their relationship to Critical Zone evolution; the recovery of the Critical Zone from disturbances such as fire and flooding; and changes in the coastal Critical Zone related to rising sea level. In order to support community data collection, access, and archival for the Critical Zone Network community, the development of new cyberinfrastructure (CI) is now underway that leverages prior investments in domain-specific data repositories that are already operational and delivers data services to established communities. The goal is to create the infrastructure required for managing, curating, disseminating, and preserving data from the new network of Critical Zone Cluster projects, along with legacy datasets from the existing Critical Zone Observatory Network, including digital management of physical samples. This CI will have a distributed architecture that links existing data facilities and services, including HydroShare, EarthChem, SESAR (System for Earth Sample Registration), and eventually other systems like OpenTopography as needed, via a central CZ Hub that provides tools and services for simplified data submission, integrated data discovery and access, and links to computational resources for data analysis and visualization in support of CZ synthesis efforts. Our goal is to make data, samples, and software collected by the CZ Network Cluster projects Findable, Accessible, Interoperable, and Reusable following the FAIR guiding principles for scientific data management and stewardship, by taking advantage of existing, FAIR compliant, domain-specific data repositories. This collaboration among domain repositories to deliver integrated data services for an interdisciplinary science program will provide a template for future development of integrated interdisciplinary data services.
How to cite: Horsburgh, J. S., Lehnert, K., and Bales, J.: Linking Domain Repositories to Build Cyberinfrastructure for Interdisciplinary Critical Zone Research, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13796, https://doi.org/10.5194/egusphere-egu21-13796, 2021.