EGU21-14013
https://doi.org/10.5194/egusphere-egu21-14013
EGU General Assembly 2021
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

On the relationship of aeolian relief, microrelief and wind direction with the concentration of dust aerosol in the near-surface layer

Elena Malinovskaya, Otto Chkhetiani, and Leonid Maksimenkov
Elena Malinovskaya et al.
  • A.M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences, Laboratory of geophysical hydrodynamics, Moscow, Russian Federation (elen_am@inbox.ru)

Saltations, secondary knock-out of particles, and their rolling over the surface in the abrasion process are the main source of micron- and submicron-sized particles near the surface [1]. Zones with different aerosol generation rates and wiping dynamics emerge around growing aeolian structures [3,4]. On the leeward slope, larger particles remain in the embedding zone and abrasion is less active. On the windward slope, fractions of smaller size accumulate in the zone of cascade capture of layers by wind [2], and abrasion is predominant.

 

The occurrence of aeolian forms varies in time depending on their height. Three areas are considered: 1-3 m, 1-3 cm, <1 cm. The effect of changes in wind direction at intervals of a few hours changes the length of zones near aeolian structures. Thus, the cascade trapping zone expands and the accumulation zone narrows. Aeolian microstructures on the surface of the windward slope decrease the length of the cascade capture zone, leaving structures with a height > 1 cm almost unchanged.

 

We consider a sample of data from summer field measurements obtained in the evening with close values of air temperature (30-32°C) and wind speeds (6.1-6.5 m/s). Observations were made on a perennial patch of unfixed sands about 1.5 km long and 200-300 m wide at 5 km to the west of Naryn Khuduk settlement (Kalmykia, 2010-2020). The lines of dune ridges for this area extend approximately in the latitudinal direction.

 

Based on the empirical functions of aerosol size and mass distribution, the classification related to the wind direction in relation to the line of windward and leeward slopes connection was obtained. When the wind direction changes from frontal to tangential along the slopes, mass concentrations of coarse aerosol fraction increase. This can be related to the processes of chipping for newly involved large particles from the layers of the leeward slope setting zone. The phenomenon is also illustrated by the observed emergence on the surface of a ripple with a ridge spacing of 10-30 cm during the next day of a micro-ridge with a period of 1-2 cm. For the windward slope line change model [5], it was obtained that the fraction of detached particles decreases with the growth of new structures. The presence of aeolian ripples [6] and larger particles generally reduces the fraction of particles moving in the wind flow.  There is weakening of wiping intensity at collision and reduction of concentration of submicron particles as a result, as compared to the case of absence of developed microrelief. The type of aerosol distribution function is influenced by the size of the embedding and cascade trapping zones and the composition of the layer of particles involved in collisions and displacements near the surface.

The study was supported by the Russian Science Foundation project 20-17-00214.

 

1.Houser C.A., Nickling W.G. Sedimentology. 48(2). 255,. (2001)

2.Chepil W.S. Soil Science  60(4) 305.(1945)

3.Anderson R. Sedimentology 34, 943 (1987).

4.Hoyle R., Woods A. Phys. Rev. E 56, 6861 (1997).

5.Malinovskaya E.A. Izvestiya. Atmospheric and Oceanic Physics 55(2) 218 (2019)

6. Malinovskaya E. et al. EGU2019-3693-1 (2019)

 

How to cite: Malinovskaya, E., Chkhetiani, O., and Maksimenkov, L.: On the relationship of aeolian relief, microrelief and wind direction with the concentration of dust aerosol in the near-surface layer, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14013, https://doi.org/10.5194/egusphere-egu21-14013, 2021.