Contrasting effect of coniferous and broadleaf trees on soil carbon storage during reforestation of mature soils and afforestation of immature soils
- Biology Centre, SoWa Na sáckách 7, Ceske Budejovice, Czechia
Soils and forest soil in particular represent important pools of carbon (C). Here, we present a quantitative review of common garden experiments in which various tree species were planted alongside each other in European countries to answer following questions: Does soil sequester more C under broadleaf than under conifer trees? and How do the effects of tree species and litter quality on soil C sequestration change with soil development (i.e., maturity) and other soil properties? We found that the effects of broadleaf and coniferous trees on C sequestration differed with the stage of soil development. In mature soils, more C was stored under coniferous trees than under broadleaf trees. In soils in early stages of soil development, on post-mining spoil heaps, the opposite trend was found, i.e., more C was stored under broadleaf. C sequestration under broadleaf trees was highest in immature soils and in soils with high pH. C sequestration was negatively correlated with the litter C:N ratio in post-mining soils but not in other more mature soils. Similarly C sequestration was negatively correlated with the litter C:N in alkaline soils and in soil with high clay content. These results suggest that C sequestration mechanisms differ in immature vs. mature soils such that C storage is greater under broadleaf trees in immature soils but is greater under coniferous trees in mature soils. The study was supported by LIFE17/IPE/CZ/000005 project
How to cite: Hublova, L. and Frouz, J.: Contrasting effect of coniferous and broadleaf trees on soil carbon storage during reforestation of mature soils and afforestation of immature soils, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14052, https://doi.org/10.5194/egusphere-egu21-14052, 2021.