EGU21-14176
https://doi.org/10.5194/egusphere-egu21-14176
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Comparison of External ULF wave Sources in Driving Radiation Belt Electron Dynamics

Zhe Niu, Alexander Degeling, and Quanqi Shi
Zhe Niu et al.
  • Shangdong University, ISS, space science and physics, China (zniu@mail.sdu.edu.cn)

For the study of Earth's radiation belts, an outstanding problem is the identification and prediction of dynamic variations of Earth's trapped energetic particles, in particular during geomagnetic storms. Statistical studies indicate that different types of geomagnetic storms (e.g. CIR and CME driven storms) have differing efficiencies in their ability to cause energization, transport and loss of energetic particles. This is most likely due to differences in the dominant mechanisms by which particles are affected between the storm types, and the locations within the magnetosphere where these mechanisms operate. For example, the dominant external generation mechanism for Pc5 ULF waves during CME driven storms may be magnetopause buffeting across the dayside, while for CIR driven storms the Kelvin-Helmholtz Instability (KHI) along the morning and evening flanks is more likely dominant. This changes the location and efficiency by which ULF waves can resonantly interact with radiation belt particles in these two storm types.

In this study, we use a 2D MHD wave model to investigate how the dominant generation mechanism in the case of CIR and CME driven storms determines the ability for externally generated wave power to penetrate deeply into the magnetosphere. In order to do this, we model ideal MHD waves in a 2D box model magnetosphere with a parabolic magnetopause boundary layer. We consider how fluctuations in dynamic pressure generate magnetopause buffeting perturbations that launch MHD fast mode waves, following the approach of Degeling et al., JGR 2011. We also include in our simulation a simple model for magnetosheath flow, and calculate the local linear KHI growth rate for perturbations along the magnetopause flanks as a function of frequency to provide a KHI driven wave source.

How to cite: Niu, Z., Degeling, A., and Shi, Q.: Comparison of External ULF wave Sources in Driving Radiation Belt Electron Dynamics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14176, https://doi.org/10.5194/egusphere-egu21-14176, 2021.

Displays

Display link