EGU21-14234
https://doi.org/10.5194/egusphere-egu21-14234
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Evolution of Large Bedrock Landslides in the South-Central Andes of NW Argentina 

Mohammad M.Aref, Bodo Bookhagen, and Manfred R. Strecker
Mohammad M.Aref et al.
  • Potsdam University, Institute of Geosciences, Potsdam, Germany (mohseniaref@uni-potsdam.de)

Deep-seated, slow moving bedrock landslides are significant natural disasters with severe socio-economic repercussions. During the past decades, an acceleration of these hazards has been reported globally due to changes in seasonal freeze-thaw cycles, permafrost thawing, infrastructure development and other anthropogenic sources, changes of precipitation and groundwater levels, and variation in seismic activity. Interferometric Synthetic Aperture Radar(InSAR) is a powerful tool to map landslides movement from space and the Sentinel 1 C-band radar mission provides a high temporal resolution data source to investigate seasonal and intra-annual changes of landslide behaviour.

To construct a 2D/3D displacement field, we decompose a combination of different look angles and InSAR ascending and descending tracks of different sensors including Sentinel and ALOS 1 PALSAR data. The ionospheric delay for InSAR observations is estimated with a split range-spectrum technique because significant ionospheric total electron content variation is common in our study area in the Central Andes. Both statistical phase-based and weather model estimation approaches are implemented to minimize the effect of tropospheric signal on InSAR observations.

Our observations identify several areas with rapid translational slide movements exceeding 5-10 cm/y. Multi-annual and inter-annual behaviour of deformation is extracted through time series analysis and a hierarchical clustering approach is used to identify geographic areas with similar characteristics and rates. We show the wide-spread spatial distribution of unstable hill slopes in the Eastern Cordillera of the south-central Andes, especially at high elevations where field observations are difficult. We identify driving forces to be a combination of pre-existing geologic structures and climatic parameters.

How to cite: M.Aref, M., Bookhagen, B., and R. Strecker, M.: Evolution of Large Bedrock Landslides in the South-Central Andes of NW Argentina , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14234, https://doi.org/10.5194/egusphere-egu21-14234, 2021.

Displays

Display file