EGU21-14265
https://doi.org/10.5194/egusphere-egu21-14265
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Evaluation of the ERA5 reanalysis as a reference dataset for fine-scale hydrological modelling over alpine basins 

Susen Shrestha1, Mattia Zaramella1, Mattia Callegari2, Felix Greifeneder2, and Marco Borga1
Susen Shrestha et al.
  • 1Department of Land, Environment, Agriculture and Forestry, University of Padova, Italy
  • 2EURAC, Institute for Earth Observation, Bolzano, Italy

The European Center for Medium-Range Weather Forecasts (ECMWF) has recently released its most advanced reanalysis product, the ERA5 dataset. It was designed and generated with methods giving it multiple advantages over the previous release, the ERA-Interim reanalysis product. Notably, it has a finer spatial resolution, is archived at the hourly time step, uses a more advanced assimilation system, and includes more sources of data. This paper aims to evaluate the ERA5 reanalysis as a potential reference dataset for hydrological modelling by considering the ERA5 precipitation and temperatures as proxies for observations in the hydrological modelling process. This is obtained by using a semi-distributed hydrological model over basins ranging from 40km2 to 6900 km2 over the Upper Adige river basin in the Eastern Italian Alps. This study shows that ERA5-based precipitation product is affected by a significant bias which translates to biased runoff at all spatial scales considered in the study. We observed that ERA5 precipitation product generally overestimate low-intensity rainfall and underestimate high rainfall intensity in the region. We analysed how this affects simulation of annual max floods over the study area. The results show that flood simulations are in general surprisingly good, as they result from the combination of two cascading errors: i) overestimation of the soil moisture conditions at the start of the event and ii) the underestimation of the event forcing rainfall. Differences between ERA5 and observation datasets are mostly linked to precipitation, as temperature only marginally influences the hydrological simulation outcomes.

How to cite: Shrestha, S., Zaramella, M., Callegari, M., Greifeneder, F., and Borga, M.: Evaluation of the ERA5 reanalysis as a reference dataset for fine-scale hydrological modelling over alpine basins , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14265, https://doi.org/10.5194/egusphere-egu21-14265, 2021.

Displays

Display file