EGU21-14375
https://doi.org/10.5194/egusphere-egu21-14375
EGU General Assembly 2021
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Stochiometric control of SOM and plant derived soil C pools dynamics under elevated CO2  

Johanna Pihlblad1, Louise C. Andresen2, Catriona Macdonald1, David Ellsworth1, and Yolima Carrillo1
Johanna Pihlblad et al.
  • 1Western Sydney University, Hawkesbury Institute for the Environment, Penrith, Australia (johanna.pihlblad@westernsydney.edu.au)
  • 2University of Gothenburg, Department of Earth Sciences, Gothenburg, Sweden

Elevated carbon dioxide in the atmosphere (eCO2) has been found to influence soil C by altering the belowground balance between the decomposition of existing soil organic matter (SOM) and the accumulation of plant-derived C inputs. Even small changes in this balance can have a potentially large effect on future climate. The relative availability of soil nutrients, particularly N and P, are crucial mediators of both decomposition and new C accumulation, but both these two processes are rarely assessed simultaneously. We asked if the effect of eCO2 on soil C decomposition was mediated by soil N and P availability, and if the effect of CO2 and soil N and P availability on soil C decomposition was dependent on C pools (existing SOM C, newly added C). We grew Eucalyptus grandis and a C3 grass (Microlaena stipoides) from seed in an experimentally manipulated atmosphere with altered δ13C signature of CO2, which allowed the separation of plant derived C, from the existing SOM C. Then we manipulated N and P relative abundance via nutrient additions. We evaluated how the existing SOM and the new plant-derived C pool, and their respiration responded to eCO2 conditions and nutrient treatments. SOM respiration significantly increased in the eucalypts when N was added but was not affected by CO2. In the grass the SOM respiration increased with eCO2 and added N and SOM respiration per unit of SOM-derived microbial was significantly higher in both the added P and added N+P nutrient treatments. The rhizosphere priming of SOM was suppressed in both the added P and added N+P nutrient treatments. The heterotrophic respiration of plant-derived C was contingent on nutrient availability rather than eCO2 and differed by species. The grass-derived respiration was significantly higher than the eucalypt and was higher in both added P and added N+P nutrient treatments. Thus, nutrient stoichiometry had similar effects on SOM and plant derived C, but e CO2 only affected SOM and only for the Eucalyptus.  This study shows how species differences have large effects on rhizosphere C cycling responses to eCO2 and stoichiometric conditions.      

How to cite: Pihlblad, J., Andresen, L. C., Macdonald, C., Ellsworth, D., and Carrillo, Y.: Stochiometric control of SOM and plant derived soil C pools dynamics under elevated CO2  , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14375, https://doi.org/10.5194/egusphere-egu21-14375, 2021.