EGU21-14427, updated on 07 Jun 2023
https://doi.org/10.5194/egusphere-egu21-14427
EGU General Assembly 2021
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Time-scale dependence of climate-carbon cycle feedbacks for weak perturbations in CMIP5 models

Guilherme Torres Mendonça1,2, Julia Pongratz2,3, and Christian Reick2
Guilherme Torres Mendonça et al.
  • 1International Max Planck Research School on Earth System Modelling, Hamburg, Germany (guilherme.mendonca@mpimet.mpg.de)
  • 2Max Planck Institute for Meteorology, Hamburg, Germany
  • 3Ludwig-Maxmillians-Universität München, Munich, Germany

The increase in atmospheric CO2 driven by anthropogenic emissions is the main radiative forcing causing climate change. But this increase is not only a result from emissions, but also from changes in the global carbon cycle. These changes arise from feedbacks between climate and the carbon cycle that drive CO2 into or out of the atmosphere in addition to the emissions, thereby either accelerating or buffering climate change. Therefore, understanding the contribution of these feedbacks to the global response of the carbon cycle is crucial in advancing climate research. Currently, this contribution is quantified by the α-β-γ framework (Friedlingstein et al., 2003). But this quantification is only valid for a particular perturbation scenario and time period. In contrast, a recently proposed generalization (Rubino et al., 2016) of this framework for weak perturbations quantifies this contribution for all scenarios and at different time scales. 

Thereby, this generalization provides a systematic framework to investigate the response of the global carbon cycle in terms of the climate-carbon cycle feedbacks. In the present work we employ this framework to study these feedbacks and the airborne fraction in different CMIP5 models. We demonstrate (1) that this generalization of the α-β-γ framework consistently describes the linear dynamics of the carbon cycle in the MPI-ESM; and (2) how by this framework the climate-carbon cycle feedbacks and airborne fraction are quantified at different time scales in CMIP5 models. Our analysis shows that, independently of the perturbation scenario, (1) the net climate-carbon cycle feedback is negative at all time scales; (2) the airborne fraction generally decreases for increasing time scales; and (3) the land biogeochemical feedback dominates the model spread in the airborne fraction at all time scales. This last result therefore emphasizes the need to improve our understanding of this particular feedback.

References:

P. Friedlingstein, J.-L. Dufresne, P. Cox, and P. Rayner. How positive is the feedback between climate change and the carbon cycle? Tellus B, 55(2):692–700, 2003.

M. Rubino, D. Etheridge, C. Trudinger, C. Allison, P. Rayner, I. Enting, R. Mulvaney, L. Steele, R. Langenfelds, W. Sturges, et al. Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake. Nature Geoscience, 9(9):691–694, 2016.

How to cite: Torres Mendonça, G., Pongratz, J., and Reick, C.: Time-scale dependence of climate-carbon cycle feedbacks for weak perturbations in CMIP5 models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14427, https://doi.org/10.5194/egusphere-egu21-14427, 2021.

Corresponding displays formerly uploaded have been withdrawn.