EGU21-14480
https://doi.org/10.5194/egusphere-egu21-14480
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Bender Element Test and Numerical Simulation of Sliding Zone Soil with Gravels of Huangtupo Landslide

Yu Chen
Yu Chen
  • China University of Geosciences, Faculty of Engineering, China (1359791568@qq.com)

In order to study the effect of the different consolidation pressure, loading-unloading path and gravel content on the shear modulus of the small strain of sliding zone soil, a set of consolidation bender element test device was developed. The device consists of three parts: a consolidation system, a deformation measuring system, and a shear wave testing system. The consolidation system is composed of a traditional consolidation instrument and the plexiglass cylinder box. The sample is cylindrical in shape and has a size of 50 mm×50 mm. The consolidation displacement is measured by a digital display micrometer. Shear wave testing system is a wave velocity measurement system made of piezoelectric ceramic. The experimental results show that the device can control the consolidation pressure and measure the vertical deformation, measure the shear wave velocity of the sliding zone soil in real-time, and then study the variation rule of the small strain shear modulus of the sliding zone soil with gravels. The shear modulus of the sliding zone soil increases with an increase in the consolidation pressure. The shear modulus of the unloading of sliding zone soil is larger than that of loading. Under the loading pressure of 200 kPa and 400 kPa, the shear modulus of the sliding zone soil first decreases and then increases with an increase in the gravel content. In the process of unloading, the shear modulus of the sliding zone soil increases with an increase in the gravel content. 

How to cite: Chen, Y.: Bender Element Test and Numerical Simulation of Sliding Zone Soil with Gravels of Huangtupo Landslide, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14480, https://doi.org/10.5194/egusphere-egu21-14480, 2021.