EGU General Assembly 2021
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

P-PINI: a new inversion method for sediment-burial dating

Jesper Nørgaard1, John Jansen2, Stephanie Neuhuber3, Zsófia Ruszkizcay-Rüdiger4, Sandra Braumann3, Markus Feibig3, Philipp Häuselmann5, and Mads Faurschou Knudsen1
Jesper Nørgaard et al.
  • 1Geoscience, Aarhus University, Aarhus, Denmark
  • 2GFÚ Institute of Geophysics, Czech Academy of Sciences, Prague, Czechia
  • 3Institute of Applied Geology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
  • 4Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
  • 5Swiss Institute for Speleology and Karst Studies SISKA, La Chaux-de-Fonds, Switzerland

For sediment-burial dating with a cosmogenic nuclide pair, the isochron burial method performs well provided that the sediment source has undergone (1) steady erosion and (2) continuous exposure to cosmic rays. These conditions exert important limitations on applications of the method. And yet, in mountainous fluvial and glacial landscapes, it is commonly found that the source area has experienced landsliding or glacial quarrying (i.e., non-steady erosion), and/or intermittent sediment storage or burial beneath glaciers (i.e., discontinuous exposure). As well as breaching the assumptions of the isochron method, such processes tend to yield low nuclide concentrations in the sample, which further limits its workability.

Here we present a more flexible method that accommodates complex, non-steady pre-burial erosion and exposure histories: conditions that exclude the isochron burial method. P-PINI (Particle Pathway Inversion of Nuclide Inventories) is a Monte Carlo-based inversion model that employs a source-to-sink approach for estimating the depositional age of fluvial and glaciogenic sediments. This method has been successfully applied to the Deckenschotter in the northern Alpine foreland (see Knudsen et al. 2020, Earth & Planetary Science Letters 549, 116491). As with the isochron burial method, P-PINI exploits an ensemble of paired nuclide (e.g., 10Be-26Al) concentrations measured in different samples from the same depth in a sedimentary sequence. But unlike the isochron method, P-PINI applies a stochastic approach to simulate a wide range of possible pre-depositional exposure and erosion histories for each individual sample. These different pre-burial histories (unique to each sample) are then integrated with the constraint that all samples share a common burial history at the sink. Where cosmogenic nuclide data (or other chronometric data, e.g., OSL) are available for multiple sites, Bayesian inference modelling can impose a priori relative age constraints, or estimates on the maximum duration of sediment storage.

In this presentation, we extend P-PINI to explore how sediment storage and reworking (i.e., a range of burial depths and durations) between source and sink affects burial age estimates. Significant intermediate storage is characteristic of large river systems, such as the Danube River. Using cosmogenic 10Be-26Al concentrations measured in fluvial gravels at Gänserndorf and Schlosshof, two terraces along the Danube River in the Vienna Basin (Braumann et al., 2019. Quat. Int. 509. 87-102), we examine how the burial ages at these two sites are a function of the pre-burial history experienced by the samples.  

How to cite: Nørgaard, J., Jansen, J., Neuhuber, S., Ruszkizcay-Rüdiger, Z., Braumann, S., Feibig, M., Häuselmann, P., and Faurschou Knudsen, M.: P-PINI: a new inversion method for sediment-burial dating, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14848,, 2021.


Display file

Comments on the display

to access the discussion