Seismic imaging combining active and passive sources using distributed acoustic sensing
- 1University of Vienna, Faculty of Mathematics, Austria (florian.faucher@univie.ac.at)
- 2Rice University, Department of Computational and Applied Mathematics and Department of Earth Science.
DAS finds growing interest in seismic exploration by offering a dense and low-cost coverage of the area investigated. Nonetheless, contrary to the usual geophones that measure the displacement, DAS provides information on the strain. In this work, we perform quantitative imaging of elastic media designing a new misfit functional that is adapted to these data-sets. This misfit criterion is based on the reciprocity-gap, hence defining the full reciprocity-gap waveform inversion. The main feature of our misfit is that it does not require the knowledge of the exciting source positions, and it allows us to combine data from active and passive (of unknown location) sources. In particular, the data from passive sources contain the low-frequency information needed to build initial models, while the exploration data contain the higher frequencies. We consequently follow a multi-resolution framework that we illustrate with two-dimensional elastic experiments.
How to cite: Faucher, F., Scherzer, O., and de Hoop, M. V.: Seismic imaging combining active and passive sources using distributed acoustic sensing, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15142, https://doi.org/10.5194/egusphere-egu21-15142, 2021.