EGU21-15311
https://doi.org/10.5194/egusphere-egu21-15311
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Formation features of river underground runoff under global warming conditions

Volodymyr Osadchyi, Oleksii Shevchenko, and Anastasiya Krasovs’ka
Volodymyr Osadchyi et al.
  • Ukrainian Hydrometeorological Institute, Kyiv, Ukraine (shevch62@gmail.com)

According to the results of processing long-term data series of hydrological and hydrogeological monitoring in the upper part of the Southern Bug river basin, it has been found that meteorological or climatic changes affect both terrestrial hydrosphere and shallow groundwater aquifer (level = 0.5…7.0 m). There are two stages of different effects of temperature changes on the groundwater regime: the first stage (1974-1998) had a positive impact, with an increased infiltration recharge and large-scale flooding, while the second stage (1999-2020) is characterized by increasing drought. The average annual infiltration recharge of groundwater on the first terrace above the flood-plain at the first stage has reached 191.6 mm that is quite high for this climatic zone, while at the second stage – 115.0 mm. The highest groundwater runoff to the river was recorded in 1987-1989 (the first terrace above the flood-plain), 1996-1998, 2005, and 2014 (from the left-bank catchment). By seasonal distribution, the spring runoff mostly prevailed in 1981-1986; starting from 1996-1999 (in different areas) – summer runoff, especially in years with maximum underground runoff; the winter runoff to the river slightly prevailed in certain years (1994, 1998, 2000, 2008, 2015).

With the transition from a low-water cycle of years to a water-rich cycle (and vice versa), the dominant cyclicity in the regime of groundwater and surface water changes from 5-6 years to 7-8 years.

1974-1975 and 1987-1989 had certain temperature limits that caused significant changes in the groundwater level regime: firstly, at long-term annual average depths of 1.5-1.8 m under the surface, and later at depths of 3.0-4.4 m having led to the transition and consolidation of levels at higher grades. At the second stage, the trends of precipitation, groundwater and surface runoff change significantly (surface runoff decreases most rapidly, while the intensity of groundwater runoff has slowed down), but the temperature rises with almost the same intensity. The dependence of the total river runoff on the underground increases.

In the long-term plan (40 years), groundwater and river runoffs change in opposite directions, as the regime-forming factors (temperature and precipitation) have different effects on them: rising temperatures at the first stage have led to increased groundwater runoff; at the same time, the intensity of the decrease in river runoff under the influence of temperature as well as the decrease in precipitation at the second stage increase. The difference in the rate of reactions of groundwater and surface water levels to precipitation still provides an increase in groundwater runoff by increasing the flow gradient to the river. With decreasing rainfall, this scenario will certainly lead to the depletion of groundwater reserves.

How to cite: Osadchyi, V., Shevchenko, O., and Krasovs’ka, A.: Formation features of river underground runoff under global warming conditions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15311, https://doi.org/10.5194/egusphere-egu21-15311, 2021.