Diffuse H2 degassing studies: a useful geochemical tool for monitoring Cumbre Vieja volcano, La Palma, Canary Islands
- 1Instituto Volcanológico de Canarias (INVOLCAN), 38611 Granadilla de Abona, Tenerife, Canary Islands (nperez@iter.es)
- 2Instituto Tecnológico y de Energías Renovables (ITER), 38611 Granadilla de Abona, Tenerife, Canary Islands, Spain
- 3Agencia Insular de la Energía de Tenerife (AIET), 38611 Granadilla de Abona, Tenerife, Canary Islands, Spain.
Hydrogen (H2) is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas. Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al. 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. Cumbre Vieja volcano (La Palma, Canary Islands) is the most active basaltic volcano in the Canaries with seven historical eruptions being Teneguía eruption (1971) the most recent one. Cumbre Vieja volcano is characterized by a main north–south rift zone 20 km long, up to 1950 m in elevation and covering an area of 220 km2 with vents located at the northwest and northeast. Cumbre Vieja does not show any visible degassing (fumaroles, etc.). For that reason, the geochemical volcano monitoring program at Cumbre Vieja volcano has been focused on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since 2001. Soil gas samples were collected in about 600 sampling sites selected to obtain a homogeneous distribution at about 40 cm depth using a metallic probe and 60 cc hypodermic syringes and stored in 10 cc glass vials. H2 content was analysed later by a VARIAN CP4900 micro-GC. A simple diffusive emission mechanism was applied to compute the emission rate of H2 at each survey. Diffuse H2 emission values were used to construct spatial distribution maps by using sequential Gaussian simulation (sGs) algorithm, allowing the estimation of the emission rate from the volcano. Between 2001-2003, the average diffuse H2 emission rate was ∼2.5 kg·d−1 and an increase of this value was observed between 2013-2017 (∼16.6 kg·d−1), reaching a value of 36 kg·d−1 on June 2017, 4 month before the first recent seismic swarm in October, 2017 at Cumbre Vieja volcano. Six additional seismic swarms had occurred at Cumbre Vieja volcano (February 2018, July-August 2020; October 8-10, 2020; October 17-19, 2020, November 21, 2020 and December 23-26, 2020) and changes of diffuse H2 emission related to this unrest had been observed reaching values up to ∼70 kg·d−1. Diffuse H2 emission surveys have demonstrated to be sensitive and excellent precursors of magmatic processes occurring at depth in Cumbre Vieja. Periodic diffuse H2 emission surveys provide valuable information to improve and optimize the detection of early warning signals of volcanic unrest at Cumbre Vieja volcano.
How to cite: Pérez, N. M., Melián, G. V., Hernández, P. A., Asensio-Ramos, M., Padrón, E., Rodríguez, F., Alonso, M., Martín-Lorenzo, A., Amonte, C., D'Auria, L., Barrancos, J., and Padilla, G. D.: Diffuse H2 degassing studies: a useful geochemical tool for monitoring Cumbre Vieja volcano, La Palma, Canary Islands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15403, https://doi.org/10.5194/egusphere-egu21-15403, 2021.
Corresponding displays formerly uploaded have been withdrawn.