EGU21-15764, updated on 04 Mar 2021
https://doi.org/10.5194/egusphere-egu21-15764
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Deep sea benthic foraminiferal record from the Haymana Basin (Turkey): changes in abundance patterns and diversity across Cretaceous-Paleogene boundary

Ezgi Vardar1,2 and Sevinç Özkan-Altıner1
Ezgi Vardar and Sevinç Özkan-Altıner
  • 1Middle East Technical University, Department of Geological Engineering, Turkey
  • 2University of Vienna, Department of Paleontology, Vienna, Austria (ezgiv89@univie.ac.at)

In order to reveal the response of benthic foraminifera to Cretaceous-Paleogene (K/Pg) boundary event, a high-resolution benthic foraminiferal study was carried out from a land-based Haymana section which is biostratigraphically complete, and once located in the northern branch of the Tethyan Ocean. To this end, 25 samples collected from deep marine succession of the Haymana Basin were quantitatively assessed along with the utilization of quantification of species, morphogroup analysis and diversity indices to establish remarkable changes in biofacies which resulted from the boundary event.

Depositional environment is inferred as upper bathyal (200-600 m) throughout the studied section based on foraminiferal associations. Bathymetric marker species include mainly bi- to triserial forms in Maastrichtian, which favor this interval. Calcareous taxa including Bolivinoides draco,  Eouvigerina subsculptura, Nonionellina sp. 1, Pseudouvigerina plummerae, Pyramidina minuta, as well as species belonging to Gyroidinoides, Laevidentalina, Lagena, Lenticulina, Pullenia, and Sitella are together forming 30% of the whole assemblage in this study, which are also attributed as Shallow Bathyal Assemblage of Widmark and Speijer (1997b) from the upper bathyal environment. Accompanied agglutinated taxa are consisting of Clavuinoides trilatera, Arenobulimina sp., as well as species of Dorothia, Gaudryina, Verneuilina, and Heterostomella, which are reported from low and mid-latitude Slope Deep Water biofacies of Kuhnt et al. (1989). There was probably no paleobathymetric change in the Danian, as it is concluded from the structure of the faunal assemblage. Besides, calcareous taxa are found to be more abundant with respect to agglutinated taxa within the whole section, offering deposition over Carbonate Compensation Depth (CCD) level.

With this study, Eouvigerina subsculptura Acme Zone is newly offered for the uppermost Maastrichtian, and also aligned with Bolivinoides draco Zone, since it is existing as very abundant in all samples. Besides, Angulogavelinella avnimelechi-Anomalinoides rubiginosus Interval Zone (BB1) is assigned for the lowermost Danian section based on marker Paleocene species.

Based on this benthic foraminiferal record, a highly diverse foraminiferal assemblage is observed in the Maastrichtian, then it is replaced with a poor to moderate diversity assemblage in the Danian. This finding is presented by diversity indices (Fisher alpha, Shannon H and Berger Parker). Presence of diverse morphogroups together in the upper Maastrichtian section along with taxa preferring high nutrient levels including E. Subsculptura (11-23%), Sliteria varsoviensis (0-6%), Praebulimina reussi (2-9%), Heterostomella spp. (4-11%) and Sitella spp. (1-13%) suggests meso- to eutrophic conditions in this section. A sudden change in the faunal composition right after the K/Pg boundary offers depleted food flux into the bottom of the basin. Infaunal morpogroups decline after the boundary in the Danian section, whereas epifaunal morphogroups including mostly opportunistic Cibicidoides spp. (17%), increased in number in this section. The timing of this record is coinciding with the worldwide primary productivity collapse and planktonic foraminiferal mass extinction during the K/Pg boundary event.

Keywords: K/Pg boundary, deep sea benthic foraminifera, quantitative assessment, paleoenvironment, Haymana Basin

How to cite: Vardar, E. and Özkan-Altıner, S.: Deep sea benthic foraminiferal record from the Haymana Basin (Turkey): changes in abundance patterns and diversity across Cretaceous-Paleogene boundary, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15764, https://doi.org/10.5194/egusphere-egu21-15764, 2021.