Estimation of Source Parameters and their scaling relationship of small to moderate magnitude earthquakes for northeast India
- 1Indian Institute of Technology (Indian School of Mines), Dhanbad, IIT (ISM), Dhanbad, Applied Geophysics, Dhanbad, India (khanprosanta1966@gmail.com)
- 2Seismo-Geodetic data receiving and Processing Centre, Central Head Quarters, Geological Survey of India, Kolkata - 700091, India
We investigate the source parameters of 87 local earthquakes (3.5 ≤ ML ≤ 5.0) that occurred in West Brahmaputra basin and its neighbouring area, using body wave displacement spectra. Seismic moment, corner frequency, source dimension and static stress drop are estimated using a grid search method based on the model of circular source. The measured seismic moments, corner frequency and moment magnitude ranges from to N-m, 0.7 to 12.1 and 3.0 to 4.8, respectively. The average ratio of corner frequency of P - and S - waves is 2.21. The scaling relationship of seismic moment against corner frequency is also studied for various tectonics regimes separately. Median stress drop values of individual earthquake vary from ~ 0.1 to 38.5 MPa, with an average value of about ~ 6 MPa. Spatial variation of stress drop observed for different tectonic unit reveals a higher stress drop values associated with West Brahmaputra basin, Shillong-Mikir plateau and Indo-Myanmar subduction zone suggesting a higher stress accumulation that may increase the probability of higher magnitude earthquake. The empirical relationship between ML and MW scale is also derived for hazard assessment.
How to cite: Khan, P. K. and Baruah, B.: Estimation of Source Parameters and their scaling relationship of small to moderate magnitude earthquakes for northeast India, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1636, https://doi.org/10.5194/egusphere-egu21-1636, 2021.