State evolution laws and earthquake nucleation
In models of faults as elastic continua with a frictional interface, earthquake nucleation is the initiation of a propagating dynamic fault rupture nucleated by a localized slip instability. A mechanism capturing both the weakening process leading to nucleation as well as fault healing between events, is a slip rate- and state-dependent friction, with so-called direct effect and evolution effects [Dieterich, JGR 1979; Ruina, JGR 1983]. While the constitutive representation of the direct effect is theoretically supported [e.g., Nakatani, JGR 2001; Rice et al., JMPS 2001], that of the evolution effect remains empirical and a number of state-evolution laws have been proposed to fit lab rock friction data [Ruina, JGR 1983; Kato and Tullis, GRL 2001; Bar-Sinai et al., GRL 2012; Nagata et al., JGR 2012]. These laws may share a common linearization about steady-state, such that a linear stability analysis of steady, uniform sliding yields a single critical wavelength for unstable growth of perturbations [Rice and Ruina, JAM 1983]. However, the laws’ differences are apparent at later, non-linear stages of instability development.
How to cite: Viesca, R.: State evolution laws and earthquake nucleation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16502, https://doi.org/10.5194/egusphere-egu21-16502, 2021.
Corresponding displays formerly uploaded have been withdrawn.