EGU21-1976
https://doi.org/10.5194/egusphere-egu21-1976
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Effects of Content of Soil Rock Fragments on Calculating of Soil Erodibility

Miaomiao Yang, Qinke Yang, Keli Zhang, Yuru Li, Chunmei Wang, and Guowei Pang
Miaomiao Yang et al.
  • Northwest University, College of Urban and Environment, geography, China (mmyang@stumail.nwu.edu.cn)

【Objective】Rock fragments (>2mm diameter) are an important component of soil, and its presence has a significant impact on soil erosion and sediment yield. So it is essential to take into full account content of the rock fragments for accurate calculation of soil erodibility factor (K). 【Method】In this paper, based on the data available of the content of rock fragments and classes of soil texture with a resolution of 30 arc-second, influence of the content of rock fragments, including rock fragments in the soil profile (RFP) and gravels on the surface of the soil (SC), on K was assessed at a global scale, using the equation (Brakensiek, 1986) of the relationship between saturated hydraulic conductivity and grade of soil permeability, and the equation (Poesen) of soil erodibility attenuation under a rock fragment cover. 【Result】Results show: (1) The existence of rock fragments in the soil increased K by 4.43% and soil permeability by 5.68% on average in grade and lowering soil saturated hydraulic conductivity by 11.57% by reducing water infiltration rate of the soil and increasing surface runoff. The gravels on the surface of the mountain land and desert/gobi reduced K by 18.7% by protecting the soil from splashing of rain drops and scrubbing of runoff; so once the content of rock fragments in the soil profile and gravels on the surface of the land are taken into account in calculation, soil K may be 5.52% lower; (2)In the areas dominated with the effect of rock fragments, about 62.7% of the global land area, soil K decreased by 0.0091( t•hm2•h)•( hm-2•MJ-1•mm-1) on average, while in the area affected mainly by rock fragments in profile, about 31.1% of the global land area, soil K increased by 0.0019( t•hm2•h)•( hm-2•MJ-1•mm-1); and (3)The joint effect of rock fragments in profile and gravels on the surface reduced the soil erosion rate by 11.8% in the 6 sample areas. 【Conclusion】 The presence of RFP increases soil K while the presence of SC does reversely. The joint effect of the two leads to decrease in soil erosion. In plotting regional soil erosion maps, it is essential to take both of the two into account so as to improve accuracy of the mapping.

How to cite: Yang, M., Yang, Q., Zhang, K., Li, Y., Wang, C., and Pang, G.: Effects of Content of Soil Rock Fragments on Calculating of Soil Erodibility, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1976, https://doi.org/10.5194/egusphere-egu21-1976, 2021.

Displays

Display file