EGU21-2070
https://doi.org/10.5194/egusphere-egu21-2070
EGU General Assembly 2021
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Global warming, slope stability, and the dynamization of geological hazards in high mountain regions: a case study from the Eastern Alps.

Sara Savi1, Francesco Comiti2, and Manfred Strecker1
Sara Savi et al.
  • 1University of Potsdam, Germany
  • 2Free University of Bolzano, Italy

In recent decades, slope instability in high-mountain regions has often been linked to the increase in temperature and the associated permafrost degradation and/or the increase in frequency/intensity of rainstorm events. In this context we analyzed the spatiotemporal evolution and potential controlling mechanisms of small to medium-size rockfalls and debris flows in a small catchment of the Italian Alps (Sulden/Solda basin). We found that rockfall events have been increasing since the 1990s, whereas debris flows have increased only since 2010. The current warming trend of mountain regions such as the Southern Alps is leading to an increased elevation of rockfall detachment areas (altitudinal shift of ca. 300-400 m in the study site), mostly controlled by frost-cracking and permafrost thawing. In contrast, the occurrence of debris flows does not exhibit such an altitudinal shift, as it is primarily driven by extreme precipitation events exceeding the 75th percentile of the intensity-duration rainfall distribution. The possible occurrence of a debris-flow event in this environment may be additionally influenced by the accumulation of unconsolidated debris over time, which is then released during extreme rainfall events. Overall, there is evidence that the upper Sulden basin (above ca. 2500 m asl), and especially the areas in the proximity of glaciers, have experienced a significant decrease in slope stability since the 1990s and that an increase in rockfalls and debris flows during spring and summer can be observed. Our study thus confirms that “forward-looking” hazard mapping should be undertaken in these increasingly frequented areas of the Alps, as these environmental changes have elevated the overall hazard level in these high-elevation regions.

How to cite: Savi, S., Comiti, F., and Strecker, M.: Global warming, slope stability, and the dynamization of geological hazards in high mountain regions: a case study from the Eastern Alps., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2070, https://doi.org/10.5194/egusphere-egu21-2070, 2021.

Displays

Display file