EGU21-2126
https://doi.org/10.5194/egusphere-egu21-2126
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Geochemical and micropaleontological evidence of the Messinian Salinity Crisis preconditioning phase in the West Alboran Basin  

Francesca Bulian1, Tanja J. Kouwenhoven2, Francisco J. Sierro1, and Wout Krijgsman2
Francesca Bulian et al.
  • 1University of Salamanca, Area of paleontology, Department of Geology, Spain.
  • 2Department of Earth Sciences, Utrecht University, Budapestlaan 17, 3584 CD, Utrecht, The Netherlands.

The Messinian Salinity Crisis (MSC), still highly discussed within the scientific community, affected the Mediterranean Sea between 5.97 and 5.33 Ma and led to the deposition of huge evaporite accumulations both in its marginal and deep basins. During this profound palaeoecological change, the connections between the Atlantic Ocean and Mediterranean Basin were extremely reduced or even non-existing creating an environment where evaporation was dominant. However, the isolation from the global ocean was not a sudden change but most probably a stepwise process. At 7.17 Ma the first signs of restriction are visible in the sedimentological and micropaleontological records all over the Mediterranean.

Particularly, several Italian, Greek and Cypriot locations register a reduced deep water marine ventilation to the sea floor since 7.17 Ma ago as reflected in the higher abundance of benthic low oxygen foraminifer species, indicators of stressed conditions like Bolivinia spp., Bulimina aculeata, Uvigerina peregrina. In these locations, the start of the progressive Mediterranean isolation coincides with the beginning of a more regular occurrence or even the first appearance of sapropel levels which further confirms the increasingly adverse conditions and increasingly dysoxygenated bottom waters. On the other hand, apart from the first opal-rich deposits in the Sorbas basin (Southern Spain) and the Messadit section (North-East Morocco), evidence from the Western Mediterranean is lacking and no studies have focused so far on the 7.17 Ma event.

In this view, we conducted a detailed benthic foraminifer and stable isotope study of West Alboran Sea Site 976 before and after the 7.17 Ma event. This new record highlights the imprint that the early Atlantic-Mediterranean gateway restriction had on the Mediterranean sedimentological record, in a location proximal to the Messinian Gateways. Here, even if anoxic bottom water conditions were never reached, the benthic foraminifer association, paired with the benthic foraminifer carbon isotope record suggest a perturbation of the bottom water circulation and a decrease in bottom water oxygen levels starting ~7.17 Ma. In addition, a comparison of Western-Eastern Mediterranean records enabled us to make assumptions regarding the Mediterranean scale circulation before and after the 7.17 Ma event.

How to cite: Bulian, F., Kouwenhoven, T. J., Sierro, F. J., and Krijgsman, W.: Geochemical and micropaleontological evidence of the Messinian Salinity Crisis preconditioning phase in the West Alboran Basin  , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2126, https://doi.org/10.5194/egusphere-egu21-2126, 2021.

Corresponding displays formerly uploaded have been withdrawn.