EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Comparison of urban climate measurements in Berlin and LES model output for a special observation period

Ines langer, Alexander Pasternack, Uwe Ulbrich, and Henning Rust
Ines langer et al.
  • Dr. Ines Langer, Institut für Meteorologie, Stadtklima, Berlin, Germany (

Surface (2 m) temperature and specific humidity data are measured at 5-minute intervals in a network comprising 33 stations distributed across the city of Berlin, Germany. These data are utilized in order to validate a LES (large eddy simulation) model designed to assess the local climate at a very high resolution of 10 m to 1 m. This model, was developed at the ​Institute of Meteorology and Climatology (IMUK) of the Leibniz Universität Hannover, Germany, and is developed into an application tool for city planners within the funding programme "[UC²] - Urban Climate under Change", of the German Federal Ministry of Education and Research (BMBF).

The evaluation distinguishes between the different Local climate zones (LCZ) in the city, which are defined following the concept of Stewart & Oke (2012). For Berlin, the following LCZ have been identified: 2 (compact midrise), 4 (open high-rise), 6 (open low-rise), 8 (large low-rise), A (dense trees), B (scattered trees), D (low Plants), G (water).

We analyzed one cold winter day during an intensive observation period from 06 UTC on 17th January to 06 UTC on 18th January, 2017. The minimum and maximum recorded temperatures were -8.1 °C and +2 °C, respectively, the sun shine duration was 6.5 hours. Daily and hourly mean absolute error, mean square error and root mean square error confirm that the deviation between measurements and the PALM-4U model differs between the LCZ for Berlin, with particularly large negative deviations of up to 5 K in forest areas, as they are not yet well represented in the model. Smallest deviations are found for the industrial zone. In all cases, the observed amplitude of the diurnal cycle is underestimated. The role of the driving model for the deviations found is addressed.

Stewart, I.D., Oke, T.R. (2012) Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc. 93 1879-1900. DOI: 10.1175/BAMS-D-11-00019.1.


How to cite: langer, I., Pasternack, A., Ulbrich, U., and Rust, H.: Comparison of urban climate measurements in Berlin and LES model output for a special observation period, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2194,, 2021.


Display file

Comments on the display

to access the discussion