EGU21-2538
https://doi.org/10.5194/egusphere-egu21-2538
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Straw mulch impact on soil properties and initial soil erosion processes in the maize field

Ivan Dugan, Leon Josip Telak, Iva Hrelja, Ivica Kisić, and Igor Bogunović
Ivan Dugan et al.
  • University of Zagreb, Faculty of Agriculture, Zagreb, Croatia (idugan@agr.hr)

Straw mulch impact on soil properties and initial soil erosion processes in the maize field

Ivan Dugan*, Leon Josip Telak, Iva Hrelja, Ivica Kisic, Igor Bogunovic

University of Zagreb, Faculty of Agriculture, Department of General Agronomy, Zagreb, Croatia

(*correspondence to Ivan Dugan: idugan@agr.hr)

Soil erosion by water is the most important cause of land degradation. Previous studies reveal high soil loss in conventionally managed croplands, with recorded soil losses high as 30 t ha-1 under wide row cover crop like maize (Kisic et al., 2017; Bogunovic et al., 2018). Therefore, it is necessary to test environmentally-friendly soil conservation practices to mitigate soil erosion. This research aims to define the impacts of mulch and bare soil on soil water erosion in the maize (Zea mays L.) field in Blagorodovac, Croatia (45°33’N; 17°01’E; 132 m a.s.l.). For this research, two treatments on conventionally tilled silty clay loam Stagnosols were established, one was straw mulch (2 t ha-1), while other was bare soil. For purpose of research, ten rainfall simulations and ten sampling points were conducted per each treatment. Simulations were carried out with a rainfall simulator, simulating a rainfall at an intensity of 58 mm h-1, for 30 min, over 0.785 m2 plots, to determine runoff and sediment loss. Soil core samples and undisturbed samples were taken in the close vicinity of each plot. The results showed that straw mulch mitigated water runoff (by 192%), sediment loss (by 288%), and sediment concentration (by 560%) in addition to bare treatment. The bare treatment showed a 55% lower infiltration rate. Ponding time was higher (p < 0.05) on mulched plots (102 sec), compared to bare (35 sec), despite the fact that bulk density, water-stable aggregates, water holding capacity, and mean weight diameter did not show any difference (p > 0.05) between treatments. The study results indicate that straw mulch mitigates soil water erosion, because it immediately reduces runoff, and enhances infiltration. On the other side, soil water erosion on bare soil under simulated rainstorms could be high as 5.07 t ha-1, when extrapolated, reached as high as 5.07 t ha-1 in this study. The conventional tillage, without residue cover, was proven as unsustainable agro-technical practice in the study area.

Key words: straw mulch, rainfall simulation, soil water erosion

Acknowledgment

This work was supported by Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO).

Literature

Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160, 376-384.

Kisic, I., Bogunovic, I., Birkás, M., Jurisic, A., Spalevic, V. (2017). The role of tillage and crops on a soil loss of an arable Stagnic Luvisol. Archives of Agronomy and Soil Science, 63(3), 403-413.

How to cite: Dugan, I., Telak, L. J., Hrelja, I., Kisić, I., and Bogunović, I.: Straw mulch impact on soil properties and initial soil erosion processes in the maize field, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2538, https://doi.org/10.5194/egusphere-egu21-2538, 2021.

Corresponding presentation materials formerly uploaded have been withdrawn.