EGU21-2648
https://doi.org/10.5194/egusphere-egu21-2648
EGU General Assembly 2021
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Diachronous exhumation of the Carpathians from low-temperature thermochronology

Marion Roger1, Peter van der Beek2, Arjan de Leeuw1, and Laurent Husson1
Marion Roger et al.
  • 1ISTerre: Institut des Sciences de la Terre, Université Grenoble Alpes
  • 2Institut für Geowissenschaften Universität Potsdam

The Carpathians fold-and-thrust belt results from oblique collision of ALCAPA and Tisza-Dacia plates with the eastern European margin. It formed during the Oligocene and Miocene, propagating laterally from NW to SE as clearly demonstrated by balanced-cross sections (Nakapelyukh et al., 2017; Castellucio et al., 2016; Merten et al., 2010). The coeval development of the foreland basin (Roure et al., 1993) is revealed by an axial transport system that prograded from NW to SE, ultimately supplying sediments to the Black Sea (de Leeuw et al., 2020). However, lacking a regional synthesis and integration of thermochronology data, lateral propagation of exhumation in the orogen has not been demonstrated yet.

 We reconstruct the exhumation history of the entire Carpathians from the Oligocene onwards and link it with the development of the Carpathians foreland basin (CFB) using a source-to-sink approach. We compiled more than 500 apatite and zircon fission-track and (U-Th)/He ages from the literature. This comprehensive database was separated by region (Western, Eastern, and South-Eastern Carpathians) and by tectonic domain (as defined in Schmid et al., 2008). This partitioning allows for the inversion of large datasets, reflects the tectonic complexity of the belt, and avoids spurious spatial correlations (Schildgen et al., 2018). The thermochronology data was inverted using Pecube (Braun et al., 2012) to constrain exhumation rates in a Bayesian approach. We thus obtain estimates of exhumation rates through time along the belt (with their uncertainty) and convert these into bulk  sediment fluxes over time, permitting tracking of sediment routing from the eroding belt to the CFB. Ultimately, these data will be used to unravel deeper geodynamics, including the possible effects of slab detachment on the evolution of the belt and its foreland basin.

 

Key words: Low-temperature thermochronology, Carpathians, exhumation, source to sink, Pecube inversions.

How to cite: Roger, M., van der Beek, P., de Leeuw, A., and Husson, L.: Diachronous exhumation of the Carpathians from low-temperature thermochronology, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2648, https://doi.org/10.5194/egusphere-egu21-2648, 2021.

Displays

Display link