EGU21-2679
https://doi.org/10.5194/egusphere-egu21-2679
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

It is not plants alone – Protozoic silica and its role in terrestrial silicon cycling

Daniel Puppe
Daniel Puppe
  • Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany (daniel.puppe@zalf.de)

Biogenic silicon (BSi) has been found to play a fundamental role in the link between global Si and carbon cycles, because it represents a key factor in the control of Si fluxes from terrestrial to aquatic ecosystems. Furthermore, various beneficial effects of Si accumulation in plants have been revealed, i.e., increased resistance against abiotic and biotic stresses. Thus Si is of great importance for agricultural plant-soil systems. Due to intensified land use humans directly influence Si cycling on a global scale. For example, Si exports through harvested crops and increased erosion rates generally lead to a Si loss in agricultural systems with implications for Si bioavailability in agricultural soils, which is controlled by BSi to a great extent. However, while corresponding research on phytogenic BSi (i.e., BSi synthesized by plants) has been established for decades now, studies dealing with protozoic BSi (i.e., BSi synthesized by testate amoebae) have been conducted just recently. By reviewing these studies I found them to indicate that testate amoebae might play a key role in Si cycling in terrestrial ecosystems. Actually, annual biosilicification rates of idiosomic testate amoebae are comparable to or even exceed annual Si uptake rates of trees. Furthermore, it is most likely that total protozoic Si pools (considering not only intact shells but also single idiosomes, the building blocks of testate amoeba shells) are much bigger than given in publications yet, because it can be assumed that idiosomes most likely can be as stable as phytoliths (representing the phytogenic Si pool in soils), and thus are well preserved in soils. Consequently, it would be not surprising if total protozoic Si pool quantities (shells plus single idiosomes) would be found to equal phytogenic Si pool quantities in soils. With my contribution I would like to encourage further field and laboratory research to verify this assumption and gain a deeper understanding of Si cycling by testate amoebae in terrestrial ecosystems.

How to cite: Puppe, D.: It is not plants alone – Protozoic silica and its role in terrestrial silicon cycling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2679, https://doi.org/10.5194/egusphere-egu21-2679, 2021.

Displays

Display file