EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Exploring the influence of plant trait diversity on climate using the plant trait diversity model JeDi-BACH in an Earth system model

Pin-hsin Hu1,2, Christian H. Reick1, Axel Kleidon4, and Martin Claussen1,3
Pin-hsin Hu et al.
  • 1Max Planck Institute for Meteorology, Hamburg, Germany (
  • 2International Max Planck Research School on Earth System Modelling, Hamburg, Germany
  • 3CEN, Universität Hamburg, Hamburg, Germany
  • 4Max Planck Institute for Biogeochemistry, Jena, Germany

To understand the interaction between vegetation and the climate, Dynamic Global Vegetation Models (DGVMs) have been coupled with Earth system models (ESMs). In DGVMs, global vegetation is commonly empirically categorized into a few discrete plant functional types (PFTs) by differentiating their phenological, morphophysiological, and bioclimatic properties. Although the PFT-approach is useful to capture the large-scale general features of plants, growing evidence from the ecology community has challenged the use of the plant-type specific parametrization in models and the omission of the intra-variation of PFTs. Modelling studies have also shown that the local climate is highly sensitive to the selection and combination of PFTs. Therefore, a less parameter-dependent approach, of which the results should be robust to the empirical selection of parameters, is critical to address vegetation-climate interaction in climate models.

Based on a process-based plant functioning trade-off scheme developed by Kleidon and Mooney (2000), we have set up a new vegetation model JeDi-BACH and have implemented the new model into the land component of the ICON-Earth System Model (ICON-ESM). The advantage of this new model is to obtain plant distribution as a result of environmental filtering. Plants are represented based on several well-known fundamental functional trade-offs that link the plant functions to abiotic and biotic attributes. For example, plants which partition more biomass to roots could improve their soil-water uptake and thereby reduce the stress from water shortage. Each plant functional aspect is defined by a set of plant-trait parameters that is randomly generated for each plant species. Hence, every parameter set realizes a plant growth strategy with different functional capabilities. Using a large number of randomly generated plant growth strategies, plants are allowed to ‘grow’ everywhere; but the environment will select the survivors. In such a way, plants dynamically adjust to the changing environment and meanwhile influence climate. We have done several simulations of present-day climate with JeDi-BACH and coupled to the atmosphere component of the ICON-ESM to investigate how such an adaptive ecosystem interacts with regional and global climate. Future investigations will focus on non-analogue climates (eg. Eocene with tropical vegetation at high latitudes) where in contrast to PFT-based DGVMs the new model allows vegetation to adjust consistently with climate because of its dynamic selection of plant traits by environmental filtering.

Kleidon, A. and Mooney, H. A.: A global distribution of biodiversity inferred from climatic constraints: Results from a process-based modelling study, Glob. Chang. Biol., 6(5), 507–523, doi:10.1046/j.1365-2486.2000.00332.x, 2000.


How to cite: Hu, P., Reick, C. H., Kleidon, A., and Claussen, M.: Exploring the influence of plant trait diversity on climate using the plant trait diversity model JeDi-BACH in an Earth system model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2899,, 2021.


Display file