Explicit landslide characterization using high-resolution and multi-trajectory airborne UAVSAR data
- 1National Center for Airborne Laser Mapping, Department of Civil and Environmental Engineering, University of Houston, TX, USA (xiehu@uh.edu)
- 2Berkeley Seismological Laboratory, Department of Earth and Planetary Science, University of California, Berkeley, CA, USA (burgmann@seismo.berkeley.edu)
- 3Jet Propulsion Laboratory, California Institute of Technology, CA, USA (eric.j.fielding@jpl.nasa.gov; alexander.handwerger@jpl.nasa.gov)
The spatial resolution and deformation-mapping capability of SAR remote sensing fit into the scope of scientific investigations of landslides that move slowly at millimeters to meters per year. The SAR technique has become an efficient tool to detect, monitor and characterize slow-moving landslides. However, north-south motions are nearly unresolvable for the present-day, spaceborne, polar-orbiting and side-looking Interferometric SAR (InSAR) line-of-sight (LOS) mapping systems, and unstable slopes may often not face favorable directions of SAR satellites. In addition, a complete 3D displacement field cannot be obtained with only two distinct InSAR LOS measurements from ascending and descending satellite orbits. Arbitrary assumptions such as simply no north-south motions or constraints imposed by topographic gradients can provide a quasi-3D displacement estimate, yet this is subject to large bias. The Uninhabited Aerial Vehicle SAR (UAVSAR) is an airborne SAR system deployed by NASA/JPL that can acquire measurements along user-specified flight paths. UAVSAR operates with an L-band wavelength (0.24 m) and the single-look pixel spacings along the azimuth and the range directions are as small as 0.6 m and 1.67 m, respectively. Here we will focus on the contributions of UAVSAR and satellite SAR systems to studying the Slumgullion landslide in Colorado, USA with persistent movements at 1-2 cm/day, and even slower-moving landslides (cm to m per year) in the San Francisco East Bay Hills and the Eel River catchment in California, USA. As a complement to InSAR LOS measurements, the high-resolution UAVSAR data and appreciable velocity at a level of m/yr (e.g., Slumgullion landslide and numerous Eel River landslides) make it possible to extract motions by tracking pixel offsets in both azimuth and LOS directions. The flexible trajectory of the aircraft and the additional information from UAVSAR’s sub-meter resolution and multiple flight trajectories allows for an optimal 3D displacement solution, which can be further used for quantitative analysis of the formation of morphological structures, landslide-fault interactions, inferring rheology, understanding slope channel modulation, and capturing the spatiotemporally dependent sensitivity to hydroclimatic variability. New knowledge gained on the precipitation thresholds, landslide volume, and the identification of potential nucleation zones of slope failures will directly assist landslide hazard mitigation and reduction.
How to cite: Hu, X., Bürgmann, R., Fielding, E., and Handwerger, A.: Explicit landslide characterization using high-resolution and multi-trajectory airborne UAVSAR data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-290, https://doi.org/10.5194/egusphere-egu21-290, 2020.