EGU21-320
https://doi.org/10.5194/egusphere-egu21-320
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Brittle-ductile deformation in high-pressure continental units and deep episodic tremor and slip

Francesco Giuntoli and Giulio Viola
Francesco Giuntoli and Giulio Viola
  • University of Bologna, Department of Biological, Geological and Environmental Sciences, Bologna, Italy (francesco.giuntoli@unibo.it)

The geological record of deep seismic activity in subduction zones is generally limited due to common rock overprinting during exhumation and only a few regions allow studying well-preserved exhumed deep structures. The Northern Apennines (Italy) are one such area, granting access to continental units (Tuscan Metamorphic Units) that were subducted to high-pressure conditions, were affected by brittle-ductile deformation while accommodating deep tremor and slip and then exhumed back to surface, with only minor retrogression.

Our approach is based on detailed fieldwork, microstructural and petrological investigations. Field observations reveal a metamorphosed broken formation composed of boudinaged metaconglomerate levels enveloped by metapelite displaying a pervasive mylonitic foliation. Shear veins occur in both lithologies, but are more common and laterally continuous in the metapelite. They are mostly parallel to the foliation and composed of iso-oriented stretched quartz and Mg-carpholite (XMg>0.5) fibres, which are single-grains up to several centimetres long. These fibres define a stretching direction coherent with that observed in the metaconglomerate and metapelite, which is marked by K-white mica and quartz. Thermodynamic modeling constrains the formation of the high-pressure veins and the mylonitic foliation to ~ 1 GPa and 350°C, corresponding to c. 30-40 km depth in the subduction channel.

Shear veins developed in subducted (meta)sediments are a key indicator of episodic tremor and slip (e.g. 1). We propose that these structures reflect the repeated alternation of localised brittle failure, with shear veins development, and more diffuse viscous deformation. These cycles were probably related to the fluctuation of pore pressure that repeatedly reached lithostatic values. Concluding, these structures can be considered the geological record of episodic tremors and slip occurring at >30 km of depth in the Apenninic subduction channel.

1. Fagereng, Å., Remitti, F. & Sibson, R. H. Incrementally developed slickenfibers — Geological record of repeating low stress-drop seismic events? Tectonophysics 510, 381–386 (2011).

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 839779.

How to cite: Giuntoli, F. and Viola, G.: Brittle-ductile deformation in high-pressure continental units and deep episodic tremor and slip, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-320, https://doi.org/10.5194/egusphere-egu21-320, 2020.