EGU General Assembly 2021
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Tectonic evolution of Paleo-Tethys in NE Iran

Yang Chu1,2, Bo Wan1,2, Mark B. Allen3, Ling Chen1,4, Wei Lin1,2,4, and Morteza Talebian
Yang Chu et al.
  • 1Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China (
  • 2Innovation Academy of Earth Science, Chinese Academy of Sciences, Beijing, China
  • 3Department of Earth Sciences, University of Durham, Durham, UK
  • 4University of Chinese Academy of Sciences, Beijing, China

The timings of the onset of oceanic spreading, subduction and collision are crucial in plate tectonic reconstructions, but not always straightforward to resolve. The evolution of the Paleo-Tethys Ocean dominated the Paleozoic-Early Mesozoic tectonics of West Asia, but the timeline of events is still poorly-constrained. In this study we present detrital zircon ages from NE Iran, in order to determine the timing of tectonic events in the region, and the wider implications for regional tectonics, paleogeography and climate change. Paleozoic clastic rocks record two major age peaks at ~800 Ma and ~600 Ma. The consistency in age patterns shows a dominant provenance from the Neoproterozoic basement of northern Gondwana. We interpret deposition on a long-lasting passive continental margin after the initial spreading of the Paleo-Tethys Ocean. Initial collision between the South Turan (Eurasia) and Central Iran (Gondwana) blocks caused coarse clastic deposition, the protolith of the Mashhad Phyllite, in a peripheral foreland basin on the Paleozoic passive margin. The Mashhad Phyllite yields major zircon age clusters at 450-250 Ma and 1900-1800 Ma, with a clear provenance from the active, Eurasian, margin. The Paleozoic ages reveal a long-lived subduction zone under the South Turan Block began in the latest Ordovician. Analysis of the age spectra allows us to constrain the timing of initial collision as no later than 228 Ma, which is also a constraint on the maximum depositional age of the Mashhad Phyllite. Based on our new results and previous data, we discuss the interaction between the Rheic and Paleo-Tethys oceans, and explain how a new subduction zone may have initiated after continental collision. The timing of collision is similar to the Carnian Pluvial Event (CPE). Paleo-Tethys collision has previously been suggested as the trigger for this climatic change, and our study provides timing evidence that reinforces Paleo-Tethys closure as a causal mechanism for the CPE.

How to cite: Chu, Y., Wan, B., Allen, M. B., Chen, L., Lin, W., and Talebian, M.: Tectonic evolution of Paleo-Tethys in NE Iran, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3557,, 2021.


Display file

Comments on the display

to access the discussion