EGU21-3568
https://doi.org/10.5194/egusphere-egu21-3568
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

The estimation of sea spray at wind speeds ranging from light to extreme

Xingkun Xu1, Joey Voermans1, Alexander Babanin1, Hongyu Ma2, and Changlong Guan3
Xingkun Xu et al.
  • 1University of Melbourne, Engineering, Infrastructure Engineering, Australia (xingkun.xu@student.unimelb.edu.au)
  • 2First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
  • 3College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

As one of typical elements in the air-sea boundary layer, sea spray is expected to mediate energy flux exchange in the air and ocean boundary layers, and therefore it is of crucial importance to the meteorology, oceanology, and regional climatology. In addition, the spray is also considered as one of the missing physical mechanisms in atmospheric and oceanic numerical models. Hence, it is necessary to accurately predict how much sea spray is produced at the air-sea boundary layer. Though spray has been studied for a number of decades, large uncertainties still linger. For instance, uncertainties in qualifying how much spray is produced on the sea surface reach 106 times. This is because of the rarity of spray observations in the field, especially under strong wind condition.

To give a reliable spray production model, scientists tried to employ laser-based facilities in the field to observe sea spray by interpreting infrared laser-beam intensity into sea spray volume flux over the water surface. Hence, in the current study, we collected datasets in the field measured by laser-based facilities on the North-West Shelf of the coast of Western Australia, thereafter, further analyzed, and calibrated them through a series of academic, statistical, and physical analysis to ensure the data quality. After that, assuming the existence of spray drops in the air-sea layer would attenuate the infrared laser-beam intensity, the weakening extends of laser-beam intensity is used to estimate the volume flux of sea spray above the ocean surface at winds speed ranging from light to extreme during the passage of Tropical Cyclone Olwyn (2015). It should be noted that our observations of sea spray volume flux are within the ranges of existing models and are consistent with the model proposed by Andreas (1992) in both trend and magnitude.

Using the field observations of the sea spray volume flux, a sea spray volume flux model can be constructed. Given that sea spray droplets are generated at the ocean surface through breaking waves and wind shear, the sea spray volume flux is expected to be dominated by the properties of the local wind and wave field. For physical consistency across the wide range of scales observed in the field and laboratory, non-dimensional parameters (i.e., non-dimensional wind speed and the mean wave steepness) were adopted to construct the model. Consequently, a power-law non-dimensional spray volumetric flux model is suggested based on the estimation of the spray volume flux. It should be noted that one sensitive test was conducted to substantiate the inclusion of wave breaking process, here simply included with the mean wave steepness, improves spray volume flux parameterization.

How to cite: Xu, X., Voermans, J., Babanin, A., Ma, H., and Guan, C.: The estimation of sea spray at wind speeds ranging from light to extreme, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3568, https://doi.org/10.5194/egusphere-egu21-3568, 2021.

Displays

Display file