EGU21-3674
https://doi.org/10.5194/egusphere-egu21-3674
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Multichannel Heterodyne Spectroradiometer for Atmospheric Greenhouse Gas Measurements

Sergei Zenevich1,2, Iskander Gazizov1,2, Dmitry Churbanov1, Maxim Spiridonov1,2,3, and Alexander Rodin1,2
Sergei Zenevich et al.
  • 1Moscow Institute of Physics and Technology (State University), Applied infrared spectroscopy lab, Dolgoprudny, Moscow Region, Russia
  • 2Space Research Institute of the Russian Academy of Sciences, Moscow, Russia
  • 3Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia

We present a portable, multichannel laser heterodyne spectroradiometer (MLHS) with a spectral resolution of 0.0013 cm-1 for precision column measurements and vertical profiling of atmospheric greenhouse gases (GHG). Sample spectra of CO2 and CH4 absorption lines obtained by direct Sun observations have allowed us to measure GHG column abundance with a precision of 0.5% for CO2 and 10% for CH4, as well as to retrieve their vertical profiles and to get a vertical profile of the stratospheric wind Rodin et al. (2020). The fundamentals and specifics of the multichannel configuration implementation of heterodyne receivers are presented in Zenevich et al. (2020). This work presents the first data of atmospheric CO2 and CH4 measurements, which were taken in a 4-channel configuration of the heterodyne receiver. Such configuration has allowed us to get atmospheric spectra with the SNR 300-500 within 2 minutes period of signal integration and keep the high spectral resolution. The results of retrieving CO2 and CH4 vertical concentration profiles and vertical profiles of the stratospheric wind are also presented.

 

Acknowledgments

This work has been supported by the Russian Foundation for Basic Research grants # 19-29-06104  (A.V. Rodin, M. V. Spiridonov, I.Sh. Gazizov) and # 19-32-90276 (S. G. Zenevich).

 

References:

Zenevich S. et al.: The improvement of dark signal evaluation and signal-to-noise ratio of multichannel receivers in NIR heterodyne spectroscopy application for simultaneous CO2 and CH4 atmospheric measurements, OSA Continuum, 3, 7, 1801-1810, doi:10.1364/OSAC.395094, 2020.

Rodin, A. et al.: Vertical wind profiling from the troposphere to the lower mesosphere based on high-resolution heterodyne near-infrared spectroradiometry, Atmos. Meas. Tech., 13, 2299–2308, doi:10.5194/amt-13-2299-2020, 2020.

How to cite: Zenevich, S., Gazizov, I., Churbanov, D., Spiridonov, M., and Rodin, A.: Multichannel Heterodyne Spectroradiometer for Atmospheric Greenhouse Gas Measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3674, https://doi.org/10.5194/egusphere-egu21-3674, 2021.

Displays

Display file