EGU21-3830, updated on 04 Mar 2021
https://doi.org/10.5194/egusphere-egu21-3830
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Understanding the role of different geographical features in the hydrological response of humid mountainous areas through a stepwise clustering scheme

Yaqian Yang and Jintao Liu
Yaqian Yang and Jintao Liu
  • Hohai University, College of Hydrology and Water Resources, Hydrology and water resources, Nanjing, China (yangyaqian1998@163.com)

In the mountainous basins with less anthropogenic influence, the hydrological function is mainly affected by climate and landscape, which makes it possible to measure hydrological similarity indirectly by geographical features. Due to the mechanisms of runoff generation can vary geographically, in this study, a simple stepwise clustering scheme was proposed to explore the role of geographical features at different spatial hierarchy in indicating hydrological response. Research methods mainly include (1) Stepwise regression was used to quantitatively show the correlation between 35 geographical features and 35 flow features and identify the important explanatory variables for hydrological response; (2) 64 basins were divided by stepwise clustering scheme, and the overall ability of the scheme to capture hydrological similarity was tested by comparing the optimal parameters; (3) The hydrological similarity of basin groups was measured by the leave-one cross validation of hydrological model parameters. The results showed that: (1) Rainfall features, elevation, slope and soil bulk density are the main explanatory variables. (2) The NSE of basin groups based on stepwise clustering is 0.64, reaches 80% of the optimal parameter sets (NSE=0.80). The NSE of 90% basins is greater than 0.5, 80% is greater than 0.6, and 49% is greater than 0.7. (3) In humid areas, the hydrological responses of the basins with more uniform monthly rainfall and more abundant summer rainfall are more similar, e.g., the NSE of Class 4 is 0.77. Under similar rainfall patterns, the hydrological responses of the basins with higher average altitude, greater slope, more convergent of shape and richer vegetation are more similar, e.g., the NSE of Class 3-2 is 0.72 and that of Class 1-2 is 0.70. In the case of similar rainfall patterns and landforms, the hydrological responses of the basins with smaller soil bulk density are more similar, e.g., the NSE of Class 3-2-2 is 0.80. In conclusion, the stepwise clustering enhances the interpretability of basin classification, and the effect of different geographical features on hydrological response can show the applicability of hydrological simulation in ungauged basins.

How to cite: Yang, Y. and Liu, J.: Understanding the role of different geographical features in the hydrological response of humid mountainous areas through a stepwise clustering scheme, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3830, https://doi.org/10.5194/egusphere-egu21-3830, 2021.

Corresponding displays formerly uploaded have been withdrawn.