EGU21-391
https://doi.org/10.5194/egusphere-egu21-391
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Changes in gully sizes: the role of interactions between land-use changes and other driving factors

Ikenna Osumgborogwu, John Wainwright, and Laura Turnbull-Lloyd
Ikenna Osumgborogwu et al.
  • Durham University, Geography, Durham, United Kingdom of Great Britain – England, Scotland, Wales (ikenna.e.osumgborogwu@durham.ac.uk)

Changes in gully sizes are brought about by the interactions among gully-driving factors. The aim of this paper is to understand how interactions among land-use changes and other gully-drivers: relative relief, maximum slope, proximity to rivers and roads influence changes in gully length and gullied area. The study area covers 535 km2 in the Orlu region of southeast Nigeria. Gully heads were mapped using high resolution data (0.61 – 5m) acquired in November 2009 and December 2018 while supervised land-use classification was undertaken for both years. Three land-use classes were identified: non-vegetated, open vegetation and fallow. Geomorphic variables were acquired from the 30 m SRTM-DEM while gully head distances from rivers and roads were calculated using the distance tool in ArcGIS. Two sets of multiple regression analyses were undertaken, first to understand effects of land-use changes and secondly to ascertain influence of the other driving factors on changes in gully sizes. Non-vegetated surfaces increased from 58.6 km2 to 144.7 km2 between 2009 and 2018, while reduction in fallowed lands from 281.2 km2 to 57.8 km2 was observed. Of the 58.6 km2 of non-vegetated lands in 2009, 10.9 km2 were converted to open vegetation, while 0.18 km2 was transformed to fallow in 2018, 50.9 km2 of fallow-cover remained the same between 2009 and 2018 while 29 km2 were converted to non-vegetated and 201.3 km2 were used for open vegetation in 2018. These land use changes will likely increase volume of surface runoff.  Gully numbers grew from 26 to 39, mean gully length increased from 0.26 to 0.43 km which translates to a mean headward retreat of 17 m yr-1. Total length of all gullies changed from 10.22 to 16.63 km. Mean gullied area increased from 13775 to 16183 m2, indicating an areal retreat of 241 m2 yr-1, total gullied area grew from 0.36 km2 to 0.62 km2. Relative relief ranged between 6 – 46 m, lands around the rivers had the highest concentration of gullies, and there was a sharp rise in slope from 0 – 58.2% within a distance less than 500 m from the rivers. The first Multiple regression result indicated that associations between changes in gully length, non-vegetated and fallow land-use classes were significant at 0.05. Results of the second multiple regression analysis showed that only gully head distance from rivers had a significant positive effect on changes in gullied area. Bearing in mind the configuration of the land and rise in slope from rivers, increased volume of surface runoff (caused by changes in land use and higher slope rise) can attain higher erosive power as it approaches the river. This increased surface flow passing through gully channels on its way to the river, can enhance gully length and areal retreat.

Keywords: Gully erosion, land-use changes, gully-drivers, south east Nigeria

How to cite: Osumgborogwu, I., Wainwright, J., and Turnbull-Lloyd, L.: Changes in gully sizes: the role of interactions between land-use changes and other driving factors, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-391, https://doi.org/10.5194/egusphere-egu21-391, 2020.

Corresponding presentation materials formerly uploaded have been withdrawn.