EGU21-4163
https://doi.org/10.5194/egusphere-egu21-4163
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Glacial Lake Outburst Floods Early Warning System to save lives and livelihood of the Nepal Himalaya communities: A case Study of Imja Glacial Lake, Nepal 

Deepak Kc, Top Khatri, and Rishiram Sharma
Deepak Kc et al.
  • Institute of Earth Science, University of Lausanne, Lausanne, Switzerland (deepak.kc@gmail.com) and United Nations Development Programme in Nepal

Nepal, a mountainous country, is experiencing multiple disasters, majority of which are induced by Climate Change. Erratic rainfall, extremely high temperature during summer, cold waves are some of them. Nepal will experience the impacts of climate change through an increase in temperature, more frequent heat waves and shorter frost durations in the future (5AR IPCC). Nepal is witnessing the increased maximum temperature of 0.56oC per decade and the increment of the temperature is even higher in the mountain region (ICIMOD 2019). One of the major impacts of Climate Change among others, is glacier retreat and Glacial Lake Outburst Floods (GLOFS). Nepal has already experienced more than 26 GLOFS (UNDP and ICIMOD 2020), originated both from Nepal and China, Tibet.

The Imja Glacial Lake is located at 27° 53′ 55“ N latitude, 86° 55’ 20” E longitude and at an altitude of 5010 m in Everest Region of Nepal Himalayas.  Imja was identified during 1960s as a small supra lake, was later expanded to an area of 1.28 Km2, 148.9 meter deep, holding 75.2 million cubic meters of water in 2014.   Lake lowering by 3.4 metres and establishment of early warning system was done in 2016 by the Government of Nepal and UNDP with the support of Global Environment Facility.  Hydro-met stations & GLOF Sensors in the periphery and downstream  of Imja Lake and automated early warning sirens in six prime settlements in the  downstream of Imja  watershed  linking with  dynamic SMS Alert system along 50 km downstream of Imja Dudh Koshi River have been have been linked with community-based DRM institutions at local government level. This initiative is important for preparedness and response of GLOF Risk Reduction in the Imja Valley, benefitting 71,752 vulnerable people, both local and the tourists visiting the Everest Region of Nepal.

Early Warning System of Tsho Rolpa Glacial Lake, the biggest Glacial Lake of Nepal is another example in the such system. New inventory of Glacial Lakes has identified 47 critical lakes as priority lakes for GLOF Risk Reduction in Koshi, Gandaki and Karnali basins. In the new context of federal  governance system, the role of federal, province and local government and communities is crucial  for achieving the targets of  Sendai Framework for Disaster Risk Reduction , particularly target “g” and SDGs 11 and 13  through integrating  the targets in the regular planning and   its’ implementation for resilient and Sustainable Development of  Nepal.

References:

Glacial lakes and glacial lake outburst floods in Nepal. Kathmandu, ICIMOD 2011,  Nepal Disaster Report, Ministry of Home affairs (MoHA) , 2015, 2018 Annual Reports UNDP 2016, 2017 and 2018,  Imja Hydro-Meteorological and Early Warning System User Manual, Government of Nepal and UNDP, 2017 Project Completion Report: Community Based Flood and Glacial Lake Outburst Risk Reduction Project, Government of Nepal and UNDP, 2017,  Inventory of glacial lakes and identification of potentially dangerous glacial lakes in the Koshi, Gandaki, and Karnali River Basins of Nepal, the Tibet Autonomous Region of China, and India. Research Report, ICIMOD and UNDP, 2020

 

How to cite: Kc, D., Khatri, T., and Sharma, R.: Glacial Lake Outburst Floods Early Warning System to save lives and livelihood of the Nepal Himalaya communities: A case Study of Imja Glacial Lake, Nepal , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4163, https://doi.org/10.5194/egusphere-egu21-4163, 2021.

Displays

Display file