EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Macroplastic Debris Transfer in Rivers: A Travel Distance Approach 

Robert Newbould, Mark Powell, and Mick Whelan
Robert Newbould et al.
  • School of Geography, Geology and the Environment, University of Leicester, Leicester, UK (

Plastic accumulation in the marine environment is a major concern given the harmful effects and longevity of plastics at sea. Although rivers significantly contribute to flux of plastic to marine systems, plastic transport in rivers remains poorly understood and estimates of riverine plastic flux derived from field measurements and modelling efforts are highly uncertain. In this study, a new probabilistic model of plastic transport in rivers is presented which describes the main processes controlling displacement to predict the statistical distribution of travel distances for individual items of buoyant macroplastic debris. Macroplastic transport is controlled by retention in temporary stores (or traps) created by vegetation, bank roughness elements and other obstacles. The behaviour of these traps is represented in the model via a series of Bernoulli trials conducted in a Monte Carlo simulation framework. The probability of retention or release from traps is described using physical characteristics such as the type of vegetation, channel width or channel sinuosity index. The model was calibrated using a tracer experiment with six replicates, conducted in a small 1.1 km river reach. For each replicate, 90 closed air-filled plastic bottles were injected at the upstream end of the reach and the location of each bottle was recorded several times over a 24-hour period. Bottles were chosen as ‘model’ macroplastic litter items given their high usage and littering volume. Travel distances were low (the average distance travelled over 24 hours was 231 m and no bottles travelled more than 1.1 km, the length of the study reach) and variable (the coefficient of variation for the replicates ranged between 0.54 and 1.41). The travel distance distributions were controlled by the location and characteristics of discrete traps. The numerical model described the observed travel distance distributions reasonably well (particularly the trapping effect of overhanging trees and flow separation at meander bends), which suggests that modelling plastic transport for longer reaches and even whole catchments using a stochastic travel distance approach is feasible. The approach has the potential to improve estimates of total river plastic flux to the oceans, although significant knowledge gaps remain (e.g. the rate and location of plastic supply to river systems, the transport behaviours of different types of plastic debris in rivers and the effectiveness of different traps in different types of river system).

How to cite: Newbould, R., Powell, M., and Whelan, M.: Macroplastic Debris Transfer in Rivers: A Travel Distance Approach , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4498,, 2021.


Display file