EGU21-4672
https://doi.org/10.5194/egusphere-egu21-4672
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Modeling of the Russell glacier's basal conditions at seasonal time scale using the satellite observations of surface ice speed

Anna Derkacheva1, Fabien Gillet-Chaulet1, and Jeremie Mouginot1,2
Anna Derkacheva et al.
  • 1Université Grenoble Alpes, CNRS, INP, Grenoble, France
  • 2Department of Earth System Science, University of California, Irvine, CA, USA

Greenland’s future response to climate change will be determined partly by various phenomena controlling ice flow. For the land-terminating sectors, the water lubricating the glacier's base is considered as a major control on the ice motion. For instance, the seasonal modulations of water input induced by summer melt can cause glacier speed-up up to +200-300% compared to the winter mean. Thus, a comprehensive understanding of variations in the basal conditions, which are at the origin of the glacier flow fluctuations, plays a key role for the climate projections.

While the in-situ measurements stay a local and hard approach to investigate the basal conditions, ice flow modeling offers the possibility to invert for them over the large area based on observations of surface glacier speed and topography. During the last decade, the number of available satellite observations has increased significantly, allowing for far more frequent measurements of the glacier speed and precise reconstruction of the seasonal fluctuations. Here, we investigate the possibility of applying this satellite-derived time-series of surface ice velocity to reconstruct the annual behavior of the basal conditions with 2 weeks temporal resolution using an ice flow model.

The area of this study is Russell glacier located on the southwest coast of Greenland. A time series of surface velocity dataset was created by merging measurements from Sentinel-1&2 and Landsat-8, covering an area up to 100 km inland with 150 m/pix spatial resolution and 2-weeks temporal resolution (Derkacheva et al. 2020). The 3D Full-Stokes ice flow model Elmer/Ice is used to invert for the effective basal friction coefficient for each time step.  Usage of a friction law that has been derived for hard beds (Gagliardini et al., 2007) allows to constrain the variation of the basal effective pressure. Overall, the results from the model inversions give access to the evolution of the basal ice speed, friction, effective and water pressure, floatation fraction throughout a complete year. The results are compared with in-situ measurements in terms of absolute values and show a good agreement. The impact of the flow model setup, regularization, assumptions for the ice rheology, and the impact of noise in the speed data are also examined and compared with in-situ measurements.

How to cite: Derkacheva, A., Gillet-Chaulet, F., and Mouginot, J.: Modeling of the Russell glacier's basal conditions at seasonal time scale using the satellite observations of surface ice speed, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4672, https://doi.org/10.5194/egusphere-egu21-4672, 2021.

Displays

Display file