EGU21-4961
https://doi.org/10.5194/egusphere-egu21-4961
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

A global decadal mode in a high-end climate model and in observations: Any connection to the solar cycle?

Michael Ghil1,2, Yizhak Feliks, and Justin Small
Michael Ghil et al.
  • 1Labo. de Météorologie Dynamique (CNRS & IPSL), Geosciences Dept., Ecole Normale Supérieure & PSL University, Paris, France (ghil@atmos.ucla.edu)
  • 2Atmospheric & Oceanic Sciences Dept., University of California at Los Angeles, Los Angeles, CA, USA

The present work addresses two persistent quandaries of the climate sciences: (i) the existence of global oscillatory modes in the coupled ocean–atmosphere system; and (ii) solar effects on this coupled system. Interannual oscillatory modes, atmospheric and oceanic, are present in several large regions of the globe. We examine here interannual-to-decadal variability over the entire globe in the Community Earth System Model (CESM) and in the NCEP-NCAR reanalysis, and apply multichannel singular spectrum analysis (MSSA) to these two datasets.

In the fully coupled CESM1.1 model, with its resolution of 0.1 × 0.1 degrees in the ocean and 0.25 × 0.25 degrees in the atmosphere, the fields analyzed are surface temperatures, sea level pressures and  the 200-hPa geopotential. The simulation is 100-yr long and the last 66 yr are used in the analysis. The two statistically significant periodicities in this IPCC-class model are 11 and 3.4 yr.

In the reanalysis, the fields of sea level pressure and of 200-hPa geopotential are analyzed at its resolution of 2.5 × 2.5 degrees over the 68-yr interval 1949–2016. Oscillations with periods of 12 and 3.6 yr are found to be statistically significant in this dataset. The spatio-temporal patterns  of the oscillations in the two datasets are quite similar. The spatial pattern of these  global oscillations over the North Pacific and North Atlantic resemble the Pacific Decadal Oscillation and the interannual variability found in the western North Atlantic, respectively.

The two global modes, with their 11–12-yr and 3.4–3.6-yr periodicities, are quite robust, suggesting potential contributions of both to predictability at 1–3-yr horizons. On the other hand, the CESM run has no year-to-year changes in the prescribed insolation, excluding any role of the solar cycle in the model’s 11-yr mode. The solar cycle is present, however, in the reanalysis, since it is present in nature and hence it does affect the observations. We speculate, therefore, that regional oscillations — with their distinct near-periodicities and spatial patterns — are synchronized  over the globe, thus yielding both the global oscillatory modes found in CESM. In nature, the decadal mode could be further synchronized with the solar cycle, but that does not seem to be the case, given the slight difference in period — 12 yr for the reanalysis and 11 yr for the solar cycle, which makes them drift in and out of phase.

The work’s tentative conclusion is, therefore: (i) yes, there are global oscillatory modes in the climate system, especially a decadal mode; but (ii) no, this mode has little or nothing to do with the solar cycle.

How to cite: Ghil, M., Feliks, Y., and Small, J.: A global decadal mode in a high-end climate model and in observations: Any connection to the solar cycle?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4961, https://doi.org/10.5194/egusphere-egu21-4961, 2021.

Displays

Display file