Rethinking Rehabilitation: Application of the SOTE model to soil rehabilitation following salinity and sodicity induced degradation
- The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Soil and Water Sciences, Israel (isaac.kramer@mail.huji.ac.il)
If not carefully managed, use of saline and sodic irrigation waters, a common practice in dryland regions, has the potential to cause significant harm to soils. Application of saline and sodic irrigation waters can lead to reductions in hydraulic conductivity, Ks, the mechanisms of which (e.g., slaking, swelling, clay dispersion) have been the focus of a vast body of scientific literature. The rehabilitation process, by contrast, is far less understood. Despite experimental evidence showing a significant degree of irreversibility, traditionally models have treated the degradation and rehabilitation processes as reversible. We demonstrate how this assumption obfuscates our ability to analyze the risk of long-term degradation and to estimate the resources and time required to rehabilitate. We achieve this by using the SOTE model — a minimalistic model that can be used to study dynamics of soil water content, salinity, and sodicity, as driven by irrigation practices and climatic conditions. Crucially, SOTE also accounts for the feedback between changing salinity and sodicity and soil Ks. This feedback includes irreversible changes in hydraulic conductivity, such that a soil’s history of degradation and rehabilitation informs its future state. We compare SOTE to existing models, which do not include hysteresis in Ks, and demonstrate that SOTE predicts more gradual rehabilitation of degraded soils, in line with the limited experimental evidence that has examined this question. For the test case of a degraded soil in a typical Mediterranean climate, SOTE forecasts that rehabilitation requires 50% more time and water resources, in comparison to models without hysteresis. This difference underscores the need to limit the risk of potential degradation, which SOTE also shows increases by 50% when hysteresis is accounted for. A sensitivity analysis indicates that SOTE is most sensitive to parameters connected to soil texture. The sensitivity analysis further indicates that our results are robust -- under all ranges of parameter values SOTE continues to forecast greater time requirements for rehabilitation and increased risk of soil degradation.
How to cite: Kramer, I., Bayer, Y., and Mau, Y.: Rethinking Rehabilitation: Application of the SOTE model to soil rehabilitation following salinity and sodicity induced degradation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5085, https://doi.org/10.5194/egusphere-egu21-5085, 2021.