EGU21-5161
https://doi.org/10.5194/egusphere-egu21-5161
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Accumulation patterns of soil organic matter in forests as a legacy of historical charcoal burning

Anna Schneider, Alexander Bonhage, Florian Hirsch, Alexandra Raab, and Thomas Raab
Anna Schneider et al.
  • BTU Cottbus-Senftenberg, Geopedology and Landscape Development, Cottbus, Germany (anna.schneider@b-tu.de)

Human land use and occupation often lead to a high heterogeneity of soil stratigraphy and properties in landscapes within small, clearly delimited areas. Legacy effects of past land use also are also abundant in recent forest areas. Although such land use legacies can occur on considerable fractions of the soil surface, they are hardly considered in soil mapping and inventories. The heterogenous spatial distribution of land use legacy soils challenges the quantification of their impacts on the landscape scale. Relict charcoal hearths (RCH) are a widespread example for the long-lasting effect of historical land use on soil landscapes in forests of many European countries and also northeastern USA. Soils on RCH clearly differ from surrounding forest soils in their stratigraphy and properties, and are most prominently characterized by a technogenic substrate layer with high contents of charcoal. The properties of RCH soils have recently been studied for several regions, but their relevance on the landscape scale has hardly been quantified.

We analyse and discuss the distribution and ecological relevance of land use legacy soils across scales for RCH in the state of Brandenburg, Germany, with a focus on soil organic matter (SOM) stocks. Our analysis is based on a large-scale mapping of RCH from digital elevation models (DEM), combined with modelled SOM stocks in RCH soils. The distribution of RCH soils in the study region shows heterogeneity at different scales. The large-scale variation is related to the concentration of charcoal production to specific forest areas and the small-scale accumulation pattern is related to the irregular distribution of single RCH within the charcoal production fields. Considerable fractions of the surface area are covered by RCH soils in the major charcoal production areas within the study region. The results also show that RCH can significantly contribute to the soil organic matter stocks of forests, even for areas where they cover only a small fraction of the soil surface. The study highlights that considering land use legacy effects can be relevant for the results of soil mapping and inventories; and that prospecting and mapping land use legacies from DEM can contribute to improving such approaches.

How to cite: Schneider, A., Bonhage, A., Hirsch, F., Raab, A., and Raab, T.: Accumulation patterns of soil organic matter in forests as a legacy of historical charcoal burning, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5161, https://doi.org/10.5194/egusphere-egu21-5161, 2021.

Corresponding displays formerly uploaded have been withdrawn.